101,663 research outputs found

    Orbital Resonance Mode in Superconducting Iron Pnictides

    Full text link
    We show that the fluctuations associated with ferro orbital order in the dxzd_{xz} and dyzd_{yz} orbitals can develop a sharp resonance mode in the superconducting state with a nodeless gap on the Fermi surface. This orbital resonance mode appears below the particle-hole continuum and is analogous to the magnetic resonance mode found in various unconventional superconductors. If the pairing symmetry is s±s_{\pm}, a dynamical coupling between the orbital ordering and the d-wave subdominant pairing channels is present by symmetry. Therefore the nature of the resonance mode depends on the relative strengths of the fluctuations in these two channels, which could vary significantly for different families of the iron based superconductors. The application of our theory to a recent observation of a new δ\delta-function-like peak in the B1g_{1g} Raman spectrum of Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 is discussed.Comment: 6 pages, 3 figure

    Localization of electric field distribution in graded core-shell metamaterials

    Full text link
    The local electric field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasi-static limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hyper-geometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric field distribution

    Performance limitations of subband adaptive filters

    Get PDF
    In this paper, we evaluate the performance limitations of subband adaptive filters in terms of achievable final error terms. The limiting factors are the aliasing level in the subbands, which poses a distortion and thus presents a lower bound for the minimum mean squared error in each subband, and the distortion function of the overall filter bank, which in a system identification setup restricts the accuracy of the equivalent fullband model. Using a generalized DFT modulated filter bank for the subband decomposition, both errors can be stated in terms of the underlying prototype filter. If a source model for coloured input signals is available, it is also possible to calculate the power spectral densities in both subbands and reconstructed fullband. The predicted limits of error quantities compare favourably with simulations presented
    corecore