5,307 research outputs found

    Deuteron production and elliptic flow in relativistic heavy ion collisions

    Get PDF
    The hadronic transport model \textsc{art} is extended to include the production and annihilation of deuterons via the reactions BBdMBB \leftrightarrow dM, where BB and MM stand for baryons and mesons, respectively, as well as their elastic scattering with mesons and baryons in the hadronic matter. This new hadronic transport model is then used to study the transverse momentum spectrum and elliptic flow of deuterons in relativistic heavy ion collisions, with the initial hadron distributions after hadronization of produced quark-gluon plasma taken from a blast wave model. The results are compared with those measured by the PHENIX and STAR Collaborations for Au+Au collisions at sNN=200\sqrt{s_{NN}^{}} = 200 GeV, and also with those obtained from the coalescence model based on freeze-out nucleons in the transport model.Comment: 9 pages, 10 figures, REVTeX, version to be published in Phys. Rev.

    Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions

    Get PDF
    Within the framework of a multiphase transport (AMPT) model that includes both initial partonic and final hadronic interactions, we show that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles, providing thus a plausible explanation of the different elliptic flows between pp and pˉ{\bar p}, K+K^+ and KK^-, and π+\pi^+ and π\pi^- observed in recent Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC).Comment: 5 pages, 7 figure

    Leader-Contention-Based User Matching for 802.11 Multiuser MIMO Networks

    Full text link
    In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client depends on who are transmitting concurrently with it. Existing MU-MIMO MAC protocols however enable clients to use the traditional 802.11 contention to contend for concurrent transmission opportunities on the uplink. Such a contention-based protocol not only wastes lots of channel time on multiple rounds of contention, but also fails to maximally deliver the gain of MU-MIMO because users randomly join concurrent transmissions without considering their channel characteristics. To address such inefficiency, this paper introduces MIMOMate, a leader-contention-based MU-MIMO MAC protocol that matches clients as concurrent transmitters according to their channel characteristics to maximally deliver the MU-MIMO gain, while ensuring all users to fairly share concurrent transmission opportunities. Furthermore, MIMOMate elects the leader of the matched users to contend for transmission opportunities using traditional 802.11 CSMA/CA. It hence requires only a single contention overhead for concurrent streams, and can be compatible with legacy 802.11 devices. A prototype implementation in USRP-N200 shows that MIMOMate achieves an average throughput gain of 1.42x and 1.52x over the traditional contention-based protocol for 2-antenna and 3-antenna AP scenarios, respectively, and also provides fairness for clients.Comment: Accepted on 12-Apr-2014 for publications at IEEE Transactions on Wireless Communication

    A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions

    Get PDF
    We describe in detail how the different components of a multi-phase transport (AMPT) model, that uses the Heavy Ion Jet Interaction Generator (HIJING) for generating the initial conditions, Zhang's Parton Cascade (ZPC) for modeling partonic scatterings, the Lund string fragmentation model or a quark coalescence model for hadronization, and A Relativistic Transport (ART) model for treating hadronic scatterings, are improved and combined to give a coherent description of the dynamics of relativistic heavy ion collisions. We also explain the way parameters in the model are determined, and discuss the sensitivity of predicted results to physical input in the model. Comparisons of these results to experimental data, mainly from heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), are then made in order to extract information on the properties of the hot dense matter formed in these collisions.Comment: 33 pages, 38 figures, revtex. Added 9 figures, version published in Phys. Rev. C. The full source code of the AMPT model in the Fortran 77 language and instructions for users are available from the EPAPS ftp site (ftp://ftp.aip.org/epaps/phys_rev_c/E-PRVCAN-72-781512/) and the OSCAR website (http://www-cunuke.phys.columbia.edu/OSCAR/

    Association between Zolpidem Use and Glaucoma Risk: A Taiwan Population-Based Case-control Study

    Get PDF
    [[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US
    corecore