1,232 research outputs found

    Complete time-dependent treatment of a three-level system

    Get PDF
    Both unitary evolution and the effects of dissipation and decoherence for a general three-level system are of widespread interest in quantum optics, molecular physics, and elsewhere. A previous paper presented a technique for solving the time-dependent operator equations involved but under certain restrictive conditions. We now extend our results to a general three-level system with arbitrary time-dependent Hamiltonians and Lindblad operators. Analytical handling of the SU(3) algebra of the eight operators involved leaves behind a set of coupled first-order differential equations for classical functions. Solution of this set gives a complete solution of the quantum problem, without having to invoke rotating-wave or other approximations. Numerical illustrations are given.Comment: 1 tar.gz file containing a Tex and four eps figure files; unzip with command gunzip RZPRA05.tar.g

    The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts

    Get PDF
    Pure and Mn-doped ZnSe nanobelts were synthesized by a convenient thermal evaporation method. Scanning electron microscopy, X-ray powder diffraction, energy dispersive X-ray spectroscopy and corresponding element mapping, and transmission electron microscope were used to examine the morphology, phase structure, crystallinity, composition, and growth direction of as-prepared nanobelts. Raman spectra were used to confirm the effective doping of Mn(2+) into ZnSe nanobelts. Micro-photoluminescence (PL) spectra were used to investigate the emission property of as-prepared samples. A dominant trapped-state emission band is observed in single ZnSe(Mn) nanobelt. However, we cannot observe the transition emission of Mn ion in this ZnSe(Mn) nanobelt, which confirm that Mn powder act as poor dopant. There are weak near-bandgap emission and strong (4)T(1) → (6)A(1) transition emission of Mn(2+) in single [Formula: see text] and [Formula: see text] nanobelt. More interesting, the (4)T(1) → (6)A(1) transition emission in [Formula: see text] nanobelt split into multi-bands. PL mapping of individual splitted sub-bands were carried out to explore the origin of multi-bands. These doped nanobelts with novel multi-bands emission can find application in frequency convertor and wavelength-tunable light emission devices

    Investigation of Electron-Phonon Coupling in Epitaxial Silicene by In-situ Raman Spectroscopy

    Full text link
    In this letter, we report that the special coupling between Dirac fermion and lattice vibrations, in other words, electron-phonon coupling (EPC), in silicene layers on Ag(111) surface was probed by an in-situ Raman spectroscopy. We find the EPC is significantly modulated due to tensile strain, which results from the lattice mismatch between silicene and the substrate, and the charge doping from the substrate. The special phonon modes corresponding to two-dimensional electron gas scattering at edge sites in the silicene were identified. Detecting relationship between EPC and Dirac fermion through the Raman scattering will provide a direct route to investigate the exotic property in buckled two-dimensional honeycomb materials.Comment: 15 pages, 4 figure

    Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    Get PDF
    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 °C has been studied by microcalorimetry and several physical–chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatitic phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO4 2− ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coating
    corecore