5,916 research outputs found

    Friction of the surface plasmon by high-energy particle-hole pairs: Are memory effects important?

    Full text link
    We show that the dynamics of the surface plasmon in metallic nanoparticles damped by its interaction with particle-hole excitations can be modelled by a single degree of freedom coupled to an environment. In this approach, the fast decrease of the dipole matrix elements that couple the plasmon to particle-hole pairs with the energy of the excitation allows a separation of the Hilbert space into low- and high-energy subspaces at a characteristic energy that we estimate. A picture of the spectrum consisting of a collective excitation built from low-energy excitations which interacts with high-energy particle-hole states can be formalised. The high-energy excitations yield an approximate description of a dissipative environment (or "bath") within a finite confined system. Estimates for the relevant timescales establish the Markovian character of the bath dynamics with respect to the surface plasmon evolution for nanoparticles with a radius larger than about 1 nm.Comment: 8 pages, 1 figure; see also cond-mat/070372

    Anomaly in the relaxation dynamics close to the surface plasmon resonance

    Full text link
    We propose an explanation for the anomalous behaviour observed in the relaxation dynamics of the differential optical transmission of noble-metal nanoparticles. Using the temperature dependences of the position and the width of the surface plasmon resonance, we obtain a strong frequency dependence in the time evolution of the transmission close to the resonance. In particular, our approach accounts for the slowdown found below the plasmon frequency. This interpretation is independent of the presence of a nearby interband transition which has been invoked previously. We therefore argue that the anomaly should also appear for alkaline nanoparticles.Comment: version published in EP

    Parametric resonance and spin-charge separation in 1D fermionic systems

    Full text link
    We show that the periodic modulation of the Hamiltonian parameters for 1D correlated fermionic systems can be used to parametrically amplify their bosonic collective modes. Treating the problem within the Luttinger liquid picture, we show how charge and spin density waves with different momenta are simultaneously amplified. We discuss the implementation of our predictions for cold atoms in 1D modulated optical lattices, showing that the fermionic momentum distribution directly provides a clear signature of spin-charge separation.Comment: 6 pages, 3 figures, published versio

    Radiative frequency shifts in nanoplasmonic dimers

    Get PDF
    This is the author accepted manuscript. The final version is available from APS via the DOI in this record.We study the effect of the electromagnetic environment on the resonance frequency of plasmonic excitations in dimers of interacting metallic nanoparticles. The coupling between plasmons and vacuum electromagnetic fluctuations induces a shift in the resonance frequencies, analogous to the Lamb shift in atomic physics, which is usually not measurable in an isolated nanoparticle. In contrast, we show that this shift leads to sizeable corrections to the level splitting induced by dipolar interactions in nanoparticle dimers. The ratio between the level splitting for the longitudinal and transverse hybridized modes takes a universal form dependent only on the interparticle distance and thus is highly insensitive to the precise fabrication details of the two nanoparticles. We discuss the possibility to successfully perform the proposed measurement using state-of-the-art nanoplasmonic architectures.This work was partially funded by the Agence Nationale de la Recherche (Project ANR-14-CE26-0005 Q-MetaMat), the Centre National de la Recherche Scientifique through the Projet International de Cooperation Scientifique program (Contract Nr. 6384 APAG), the Leverhulme Trust (Research Project Grant RPG-2015-101), and the Royal Society (International Exchange Grant Nr. IE140367, Newton Mobility Grants 2016/R1 UK-Brazil, and Theo Murphy Award TM160190)

    A Study of the Cyclotron Gas-Stopping Concept for the Production of Rare Isotope Beams

    Full text link
    The proposed cyclotron gas-stopping scheme for the efficient thermalization of intense rare isotope beams is examined. Simulations expand on previous studies and expose many complications of such an apparatus arising from physical effects not accounted for properly in previous work. The previously proposed cyclotron gas-stopper geometry is found to have a near null efficiency, but extended simulations suggest that a device with a much larger pole gap could achieve a stopping efficiency approaching roughly 90% and at least a 10 times larger acceptance. However, some of the advantages that were incorrectly predicted in previous simulations for high intensity operation of this device are compromised.Comment: Accepted for publication in Nuclear Inst. and Methods in Physics Research,

    Status of the Shielding Design for the Super-FRS

    Get PDF

    Parametric amplification of magnetoplasmons in semiconductor quantum dots

    Full text link
    We show that the magnetoplasmon collective modes in quasi-two-dimensional semiconductor quantum dots can be parametrically amplified by periodically modulating the magnetic field perpendicular to the nanostructure. The two magnetoplasmon modes are excited and amplified simultaneously, leading to an exponential growth of the number of bosonic excitations in the system. We further demonstrate that damping mechanisms as well as anharmonicities in the confinement of the quantum dot lead to a saturation of the parametric amplification. This work constitutes a first step towards parametric amplification of collective modes in many-body fermionic systems beyond one dimension.Comment: 12 pages, 5 figures; published versio

    Lifetime of the first and second collective excitations in metallic nanoparticles

    Full text link
    We determine the lifetime of the surface plasmon in metallic nanoparticles under various conditions, concentrating on the Landau damping, which is the dominant mechanism for intermediate-size particles. Besides the main contribution to the lifetime, which smoothly increases with the size of the particle, our semiclassical evaluation yields an additional oscillating component. For the case of noble metal particles embedded in a dielectric medium, it is crucial to consider the details of the electronic confinement; we show that in this case the lifetime is determined by the shape of the self-consistent potential near the surface. Strong enough perturbations may lead to the second collective excitation of the electronic system. We study its lifetime, which is limited by two decay channels: Landau damping and ionization. We determine the size dependence of both contributions and show that the second collective excitation remains as a well defined resonance.Comment: 18 pages, 5 figures; few minor change

    Compression modulus of macroscopic fiber bundles

    Full text link
    We study dense, disordered stacks of elastic macroscopic fibers. These stacks often exhibit non-linear elasticity, due to the coupling between the applied stress and the internal distribution of fiber contacts. We propose a theoretical model for the compression modulus of such systems, and illustrate our method by studying the conical shapes frequently observed at the extremities of ropes and other fiber structures. studying the conical shapes frequently observed at theextremities of ropes and other fiber structures

    Pulsed extraction of ionization from helium buffer gas

    Full text link
    The migration of intense ionization created in helium buffer gas under the influence of applied electric fields is considered. First the chemical evolution of the ionization created by fast heavy-ion beams is described. Straight forward estimates of the lifetimes for charge exchange indicate a clear suppression of charge exchange during ion migration in low pressure helium. Then self-consistent calculations of the migration of the ions in the electric field of a gas-filled cell at the National Superconducting Cyclotron Laboratory (NSCL) using a Particle-In-Cell computer code are presented. The results of the calculations are compared to measurements of the extracted ion current caused by beam pulses injected into the NSCL gas cell.Comment: Accepted for pubilication in Nucl. Instrum. Meth. B, 14 pages, 8 figure
    corecore