1,112 research outputs found
The Challenge of Unifying Semantic and Syntactic Inference Restrictions
While syntactic inference restrictions don't play an important role for SAT, they are an essential reasoning technique for more expressive logics, such as first-order logic, or fragments thereof. In particular, they can result in short proofs or model representations. On the other hand, semantically guided inference systems enjoy important properties, such as the generation of solely non-redundant clauses. I discuss to what extend the two paradigms may be unifiable
On the Expressivity and Applicability of Model Representation Formalisms
A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism
Deciding First-Order Satisfiability when Universal and Existential Variables are Separated
We introduce a new decidable fragment of first-order logic with equality,
which strictly generalizes two already well-known ones -- the
Bernays-Sch\"onfinkel-Ramsey (BSR) Fragment and the Monadic Fragment. The
defining principle is the syntactic separation of universally quantified
variables from existentially quantified ones at the level of atoms. Thus, our
classification neither rests on restrictions on quantifier prefixes (as in the
BSR case) nor on restrictions on the arity of predicate symbols (as in the
monadic case). We demonstrate that the new fragment exhibits the finite model
property and derive a non-elementary upper bound on the computing time required
for deciding satisfiability in the new fragment. For the subfragment of prenex
sentences with the quantifier prefix the
satisfiability problem is shown to be complete for NEXPTIME. Finally, we
discuss how automated reasoning procedures can take advantage of our results.Comment: Extended version of our LICS 2016 conference paper, 23 page
Linear Integer Arithmetic Revisited
We consider feasibility of linear integer programs in the context of verification systems such as SMT solvers or theorem provers. Although satisfiability of linear integer programs is decidable, many state-of-the-art solvers neglect termination in favor of efficiency. It is challenging to design a solver that is both terminating and practically efficient. Recent work by Jovanovic and de Moura constitutes an important step into this direction. Their algorithm CUTSAT is sound, but does not terminate, in general. In this paper we extend their CUTSAT algorithm by refined inference rules, a new type of conflicting core, and a dedicated rule application strategy. This leads to our algorithm CUTSAT++, which guarantees termination
Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints
The monadic shallow linear Horn fragment is well-known to be decidable and
has many application, e.g., in security protocol analysis, tree automata, or
abstraction refinement. It was a long standing open problem how to extend the
fragment to the non-Horn case, preserving decidability, that would, e.g.,
enable to express non-determinism in protocols. We prove decidability of the
non-Horn monadic shallow linear fragment via ordered resolution further
extended with dismatching constraints and discuss some applications of the new
decidable fragment.Comment: 29 pages, long version of CADE-26 pape
On the Expressivity and Applicability of Model Representation Formalisms
A number of first-order calculi employ an explicit model representation
formalism for automated reasoning and for detecting satisfiability. Many of
these formalisms can represent infinite Herbrand models. The first-order
fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism
used in the approximation refinement calculus. Our first result is a finite
model property for MSLH clause sets. Therefore, MSLH clause sets cannot
represent models of clause sets with inherently infinite models. Through a
translation to tree automata, we further show that this limitation also applies
to the linear fragments of implicit generalizations, which is the formalism
used in the model-evolution calculus, to atoms with disequality constraints,
the formalisms used in the non-redundant clause learning calculus (NRCL), and
to atoms with membership constraints, a formalism used for example in decision
procedures for algebraic data types. Although these formalisms cannot represent
models of clause sets with inherently infinite models, through an additional
approximation step they can. This is our second main result. For clause sets
including the definition of an equivalence relation with the help of an
additional, novel approximation, called reflexive relation splitting, the
approximation refinement calculus can automatically show satisfiability through
the MSLH clause set formalism.Comment: 15 page
- …
