671 research outputs found

    Boosting search by rare events

    Full text link
    Randomized search algorithms for hard combinatorial problems exhibit a large variability of performances. We study the different types of rare events which occur in such out-of-equilibrium stochastic processes and we show how they cooperate in determining the final distribution of running times. As a byproduct of our analysis we show how search algorithms are optimized by random restarts.Comment: 4 pages, 3 eps figures. References update

    Computational complexity arising from degree correlations in networks

    Full text link
    We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the NP-hard optimization problem of finding minimal vertex covers on these graphs, we show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated networks. This results in a higher complexity of the network in a computational sense: Simple heuristic algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks seem to be simple from the point of view of combinatorial optimization.Comment: 4 pages, 1 figure, accepted in Phys. Rev.

    Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms

    Full text link
    Stochastic local search algorithms are frequently used to numerically solve hard combinatorial optimization or decision problems. We give numerical and approximate analytical descriptions of the dynamics of such algorithms applied to random satisfiability problems. We find two different dynamical regimes, depending on the number of constraints per variable: For low constraintness, the problems are solved efficiently, i.e. in linear time. For higher constraintness, the solution times become exponential. We observe that the dynamical behavior is characterized by a fast equilibration and fluctuations around this equilibrium. If the algorithm runs long enough, an exponentially rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003

    Clustering by soft-constraint affinity propagation: Applications to gene-expression data

    Full text link
    Motivation: Similarity-measure based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck \cite{Frey07}. In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, {\it e.g.}, in analyzing gene expression data. Results: This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new {\it a priori} free-parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.Comment: 11 pages, supplementary material: http://isiosf.isi.it/~weigt/scap_supplement.pd

    Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years.

    Get PDF
    Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general

    Exactly solvable model with two conductor-insulator transitions driven by impurities

    Full text link
    We present an exact analysis of two conductor-insulator transitions in the random graph model. The average connectivity is related to the concentration of impurities. The adjacency matrix of a large random graph is used as a hopping Hamiltonian. Its spectrum has a delta peak at zero energy. Our analysis is based on an explicit expression for the height of this peak, and a detailed description of the localized eigenvectors and of their contribution to the peak. Starting from the low connectivity (high impurity density) regime, one encounters an insulator-conductor transition for average connectivity 1.421529... and a conductor-insulator transition for average connectivity 3.154985.... We explain the spectral singularity at average connectivity e=2.718281... and relate it to another enumerative problem in random graph theory, the minimal vertex cover problem.Comment: 4 pages revtex, 2 fig.eps [v2: new title, changed intro, reorganized text

    Stability of the replica-symmetric saddle-point in general mean-field spin-glass models

    Full text link
    Within the replica approach to mean-field spin-glasses the transition from ergodic high-temperature behaviour to the glassy low-temperature phase is marked by the instability of the replica-symmetric saddle-point. For general spin-glass models with non-Gaussian field distributions the corresponding Hessian is a 2n×2n2^n\times 2^n matrix with the number nn of replicas tending to zero eventually. We block-diagonalize this Hessian matrix using representation theory of the permutation group and identify the blocks related to the spin-glass susceptibility. Performing the limit n0n\to 0 within these blocks we derive expressions for the de~Almeida-Thouless line of general spin-glass models. Specifying these expressions to the cases of the Sherrington-Kirkpatrick, Viana-Bray, and the L\'evy spin glass respectively we obtain results in agreement with previous findings using the cavity approach

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of γN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    Multifractal analysis of perceptron learning with errors

    Full text link
    Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The results also allow some conclusions on the spatial distribution of cells.Comment: 11 pages, RevTex, 3 eps figures, version to be published in Phys. Rev. E 01Jan9
    corecore