807 research outputs found

    Postcard: #30 Branding Calves on the Plains

    Get PDF
    This black and white photographic postcard features cowboys branding cattle. A man on the left has a cow tied with rope and is wrestling it to the ground. Five men surround a cow that is on the ground. The man in the foreground is branding the cow with a branding iron. A herd of cattle are in the background. Written text is at the bottom of the card. Handwriting is on the back of the card. (Note indicates the photo was taken by Liberal, Kansas photographer Hal Reid.)https://scholars.fhsu.edu/tj_postcards/2342/thumbnail.jp

    On the possibility of magneto-structural correlations: detailed studies of di-nickel carboxylate complexes

    Get PDF
    A series of water-bridged dinickel complexes of the general formula [Ni<sub>2</sub>(μ<sub>2</sub>-OH<sub>2</sub>)(μ2- O<sub>2</sub>C<sup>t</sup>Bu)<sub>2</sub>(O<sub>2</sub>C<sup>t</sup>Bu)2(L)(L0)] (L = HO<sub>2</sub>C<sup>t</sup>Bu, L0 = HO<sub>2</sub>C<sup>t</sup>Bu (1), pyridine (2), 3-methylpyridine (4); L = L0 = pyridine (3), 3-methylpyridine (5)) has been synthesized and structurally characterized by X-ray crystallography. The magnetic properties have been probed by magnetometry and EPR spectroscopy, and detailed measurements show that the axial zero-field splitting, D, of the nickel(ii) ions is on the same order as the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange interaction can be related to the angle between the nickel centers and the bridging water molecule, while the magnitude of D can be related to the coordination sphere at the nickel sites

    Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)2_2]2_2 (Me = Mn, Fe, Co, Ni, Cu)

    Full text link
    The electronic structure of Me[N(CN)2_2]2_2 (Me=Mn, Fe, Co, Ni, Cu) molecular magnets has been investigated using x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) as well as theoretical density-functional-based methods. Both theory and experiments show that the top of the valence band is dominated by Me 3d bands, while a strong hybridization between C 2p and N 2p states determines the valence band electronic structure away from the top. The 2p contributions from non-equivalent nitrogen sites have been identified using resonant inelastic x-ray scattering spectroscopy with the excitation energy tuned near the N 1s threshold. The binding energy of the Me 3d bands and the hybridization between N 2p and Me 3d states both increase in going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states also leads to weak screening of Cu 2p and 3s states, which accounts for shifts in the core 2p and 3s spectra of the transition metal atoms. Calculations indicate that the ground-state magnetic ordering, which varies across the series is largely dependent on the occupation of the metal 3d shell and that structural differences in the superexchange pathways for different compounds play a secondary role.Comment: 20 pages, 11 figures, 2 table

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern
    corecore