210 research outputs found
Oxidation kinetics of hercynite spinels for solar thermochemical fuel production
The development of an economically viable solar thermochemical fuel production process relies largely on identifying redox active materials with optimized thermodynamic and kinetic properties. Iron aluminate (FeAl2O4, hercynite) and cobalt-iron aluminate (CoxFe1-xAl2O4) have both been demonstrated as viable redox-active materials for this process. However, doping with cobalt creates a tradeoff between the thermodynamics and kinetics of H2 production mediated by hercynite in which the kinetics are improved at the expense of lowering the yield. In this work, we evaluate four spinel aluminate materials with varying cobalt contents (FeAl2O4, Co0.05Fe0.95Al2O4, Co0.25Fe0.75Al2O4, and Co0.40Fe0.60Al2O4) to better understand the role of cobalt in the redox mediating properties of these materials and to quantify its effect on the thermodynamic and kinetic properties for CO2 reduction. A solid-state kinetic analysis was performed on each sample to model its CO2 reduction kinetics at temperatures ranging from 1200 °C to 1350 °C. An F1 model representative of first-order reaction kinetics was found to most accurately represent the experimental data for all materials evaluated. The computed rate constants, activation energies, and pre-exponential factors all increase with increasing cobalt content. High temperature in-situ XPS was utilized to characterize the spinel surfaces and indicated the presence of metallic states of the reduced cobalt-iron spinel, which are not present in un-doped hercynite. These species provide a new site for the CO2 reduction reaction and enhance its rate through an increased pre-exponential factor
Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling
Background
Energy scenarios that are used for policy advice have ecological and social impact on society. Policy measures that are based on modelling exercises may lead to far reaching financial and ecological consequences. The purpose of this study is to raise awareness that energy modelling results are accompanied with uncertainties that should be addressed explicitly.
Methods
With view to existing approaches of uncertainty assessment in energy economics and climate science, relevant requirements for an uncertainty assessment are defined. An uncertainty assessment should be explicit, independent of the assessor’s expertise, applicable to different models, including subjective quantitative and statistical quantitative aspects, intuitively understandable and be reproducible. Bayesian model averaging for input variables of energy models is discussed as method that satisfies these requirements. A definition of uncertainty based on posterior model probabilities of input variables to energy models is presented.
Results
The main findings are that (1) expert elicitation as predominant assessment method does not satisfy all requirements, (2) Bayesian model averaging for input variable modelling meets the requirements and allows evaluating a vast amount of potentially relevant influences on input variables and (3) posterior model probabilities of input variable models can be translated in uncertainty associated with the input variable.
Conclusions
An uncertainty assessment of energy scenarios is relevant if policy measures are (partially) based on modelling exercises. Potential implications of these findings include that energy scenarios could be associated with uncertainty that is presently neither assessed explicitly nor communicated adequately
Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux
SUMMARY Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure
Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders
Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.
Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human
Antisense inhibition of methylenetetrahydrofolate reductase reduces survival of methionine-dependent tumour lines
Transformed cells have been documented to be methionine-dependent, suggesting that inhibition of methionine synthesis might be useful for cancer therapy. Methylenetetrahydrofolate reductase synthesises 5-methyltetrahydrofolate, the methyl donor utilised in methionine synthesis from homocysteine by vitamin B12-dependent methionine synthase. We hypothesised that methylenetetrahydrofolate reductase inhibition would affect cell viability through decreased methionine synthesis. Using medium lacking methionine, but containing homocysteine and vitamin B12 (M-H+), we found that nontransformed human fibroblasts could maintain growth. In contrast, four transformed cell lines (one colon carcinoma, two neuroblastoma and one breast carcinoma) increased proliferation only slightly in the M-H+ medium. To downregulate methylenetetrahydrofolate reductase expression, two phosphorothioate antisense oligonucleotides, EX5 and 677T, were used to target methylenetetrahydrofolate reductase in the colon carcinoma line SW620; 400 nM of each antisense oligonucleotide decreased cell survival by approximately 80% (P<0.01) and 70% (P<0.0001), respectively, compared to cell survival after the respective control mismatched oligonucleotide. Western blotting and enzyme assays confirmed that methylenetetrahydrofolate reductase expression was decreased. Two neuroblastoma and two breast carcinoma lines also demonstrated decreased survival following EX5 treatment whereas nontransformed human fibroblasts were not affected. This study suggests that methylenetetrahydrofolate reductase may be required for tumour cell survival and that methylenetetrahydrofolate reductase inhibition should be considered for anti-tumour therapy
Docking of Secretory Vesicles Is Syntaxin Dependent
Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones
The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist
Fibrobacter succinogenes is an important member of the rumen
microbial community that converts plant biomass into nutrients usable by its
host. This bacterium, which is also one of only two cultivated species in its
phylum, is an efficient and prolific degrader of cellulose. Specifically, it has
a particularly high activity against crystalline cellulose that requires close
physical contact with this substrate. However, unlike other known cellulolytic
microbes, it does not degrade cellulose using a cellulosome or by producing high
extracellular titers of cellulase enzymes. To better understand the biology of
F. succinogenes, we sequenced the genome of the type strain
S85 to completion. A total of 3,085 open reading frames were predicted from its
3.84 Mbp genome. Analysis of sequences predicted to encode for
carbohydrate-degrading enzymes revealed an unusually high number of genes that
were classified into 49 different families of glycoside hydrolases, carbohydrate
binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of
the 31 identified cellulases, none contain CBMs in families 1, 2, and 3,
typically associated with crystalline cellulose degradation. Polysaccharide
hydrolysis and utilization assays showed that F. succinogenes
was able to hydrolyze a number of polysaccharides, but could only utilize the
hydrolytic products of cellulose. This suggests that F.
succinogenes uses its array of hemicellulose-degrading enzymes to
remove hemicelluloses to gain access to cellulose. This is reflected in its
genome, as F. succinogenes lacks many of the genes necessary to
transport and metabolize the hydrolytic products of non-cellulose
polysaccharides. The F. succinogenes genome reveals a bacterium
that specializes in cellulose as its sole energy source, and provides insight
into a novel strategy for cellulose degradation
Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling
Measuring enteric methane emissions from individual ruminant animals in their natural environment
Ruminant livestock are an important source of meat, milk, fiber, and labor for humans. The process by which ruminants digest plant material through rumen fermentation into useful product results in the loss of energy in the form of methane gas from consumed organic matter. The animal removes the methane building up in its rumen by repeated eructations of gas through its mouth and nostrils. Ruminant livestock are a notable source of atmospheric methane, with an estimated 17% of global enteric methane emissions from livestock. Historically, enteric methane was seen as an inefficiency in production and wasted dietary energy. This is still the case, but now methane is seen more as a pollutant and potent greenhouse gas. The gold standard method for measuring methane production from individual animals is a respiration chamber, which is used for metabolic studies. This approach to quantifying individual animal emissions has been used in research for over 100 years; however, it is not suitable for monitoring large numbers of animals in their natural environment on commercial farms. In recent years, several more mobile monitoring systems discussed here have been developed for direct measurement of enteric methane emissions from individual animals. Several factors (diet composition, rumen microbial community, and their relationship with morphology and physiology of the host animal) drive enteric methane production in ruminant populations. A reliable method for monitoring individual animal emissions in large populations would allow (1) genetic selection for low emitters, (2) benchmarking of farms, and (3) more accurate national inventory accounting
- …
