3,044 research outputs found
A multicomponent assembly approach for the design of deep desulfurization heterogeneous catalysts
Deep desulfurization is a challenging task and global efforts are focused on the development of new approaches for the reduction of sulfur-containing compounds in fuel oils. In this work, we have proposed a new design strategy for the development of deep desulfurization heterogeneous catalysts. Based on the adopted design strategy, a novel composite material of polyoxometalate (POM)-based ionic liquid-grafted layered double hydroxides (LDHs) was synthesized by an exfoliation/grafting/assembly process. The structural properties of the as-prepared catalyst were characterized using FT-IR, XRD, TG, NMR, XPS, BET, SEM and HRTEM. The heterogeneous catalyst exhibited high activity in deep desulfurization of DBT (dibenzothiophene), 4,6-DMDBT (4,6-dimethyldibenzothiophene) and BT (benzothiophene) at 70 °C in 25, 30 and 40 minutes, respectively. The catalyst can be easily recovered and reused at least ten times without obvious decrease of its catalytic activity. Such excellent sulfur removal ability as well as the cost efficiency of the novel heterogeneous catalyst can be attributed to the rational design, where the spatial proximity of the substrate and the active sites, the immobilization of ionic liquid onto the LDHs via covalent bonding and the recyclability of the catalyst are carefully considered
The Current Research Feature and Prospect of Bronchoalveolar Lavage in Diagnosing Lung Cancer
Investigation on gas migration in saturated materials with low permeability
International audienceInvestigation of the hydro-mechanical effects on gas migration in saturated materials with low permeabilityis of great theoretical and practical significances in many engineering fields. The conventional two-phaseflow (visco-capillary flow) theory, which regards the capillary pressure as the only controlling factor in gasmigration processes, is commonly adopted to describe the gas flow in geo-materials. However, formaterialswith lowpermeability, the conventional two-phase flow theory cannot properly describe the gasmigration.In this work, hydro-mechanical coupled gas injection tests were conducted. The volumetric variation of theliquid for applying the confining pressure in the specimen cell and the gas flow rate were monitored. Testresults indicate that gas migration is influenced by the capillary pressure and the mechanical stress simultaneously.The two key parameters of the gas entry pressure Pentry and the gas induced-dilatancy pressurePdilatancy are introduced for description of gas migration with respect to the capillary pressure and the mechanicalstress effects, respectively. When the gas injection pressure is smaller than the Pentry and thePdilatancy, the balance between the gas injection pressure and the confining pressure will lead to an intermittentgas flow. Sudden increase of gas flow rate could be observed once the gas injection pressure approachesthe Pentry or the Pdilatancy. For higher gas injection pressures, the mechanical stress effects on gas migrationcould not be neglected. The sudden increase of gas flux under high gas injection pressures could be causedby the mechanical induced-dilatancy of channels, capillary pressure induced-continuous flow pathways, aswell as the failure of sealing-efficiency. The failure of sealing-efficiency is closely related to the differencebetween the gas injection pressure and the confining pressure rather than the properties of the materialtested. Monitoring the volume of liquid for applying confining pressure is helpful for detecting the failureof sealing efficiency and the mechanism of gas breakthrough
Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.
Nanotheranostics with integrated diagnostic and therapeutic functions show exciting potentials towards precision nanomedicine. However, targeted delivery of nanotheranostics is hindered by several biological barriers. Here, we report the development of a dual size/charge- transformable, Trojan-Horse nanoparticle (pPhD NP) for delivery of ultra-small, full active pharmaceutical ingredients (API) nanotheranostics with integrated dual-modal imaging and trimodal therapeutic functions. pPhD NPs exhibit ideal size and charge for drug transportation. In tumour microenvironment, pPhD NPs responsively transform to full API nanotheranostics with ultra-small size and higher surface charge, which dramatically facilitate the tumour penetration and cell internalisation. pPhD NPs enable visualisation of biodistribution by near-infrared fluorescence imaging, tumour accumulation and therapeutic effect by magnetic resonance imaging. Moreover, the synergistic photothermal-, photodynamic- and chemo-therapies achieve a 100% complete cure rate on both subcutaneous and orthotopic oral cancer models. This nanoplatform with powerful delivery efficiency and versatile theranostic functions shows enormous potentials to improve cancer treatment
Gaussian Mixture Models based 2D-3D registration of bone shapes for orthopaedic surgery planning
Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016)
Fluoroscopy-based tracking of femoral kinematics with statistical shape models
Precise knee kinematics assessment helps to diagnose knee pathologies and to improve the design of customized prosthetic components. The first step in identifying knee kinematics is to assess the femoral motion in the anatomical frame. However, no work has been done on pathological femurs, whose shape can be highly different from healthy ones
- …
