1,891 research outputs found
Twist Deformations of the Supersymmetric Quantum Mechanics
The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian
twist which preserves the super-Hopf algebra structure of its Universal
Enveloping Superalgebra. Two constructions are possible. For even N one can
identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra.
Alternatively, supersymmetry generators can be realized as operators belonging
to the Universal Enveloping Superalgebra of one bosonic and several fermionic
oscillators. The deformed system is described in terms of twisted operators
satisfying twist-deformed (anti)commutators. The main differences between an
abelian twist defined in terms of fermionic operators and an abelian twist
defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde
Fermion Masses in Emergent Electroweak Symmetry Breaking
We consider the generation of fermion masses in an emergent model of
electroweak symmetry breaking with composite gauge bosons. A universal
bulk fermion profile in a warped extra dimension is used for all fermion
flavors. Electroweak symmetry is broken at the UV (or Planck) scale where
boundary mass terms are added to generate the fermion flavor structure. This
leads to flavor-dependent nonuniversality in the gauge couplings. The effects
are suppressed for the light fermion generations but are enhanced for the top
quark where the and couplings can deviate at the
level in the minimal setup. By the AdS/CFT correspondence our model
implies that electroweak symmetry is not a fundamental gauge symmetry. Instead
the Standard Model with massive fermions and gauge bosons is an effective
chiral Lagrangian for some underlying confining strong dynamics at the TeV
scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE
A new diagrammatic representation for correlation functions in the in-in formalism
In this paper we provide an alternative method to compute correlation
functions in the in-in formalism, with a modified set of Feynman rules to
compute loop corrections. The diagrammatic expansion is based on an iterative
solution of the equation of motion for the quantum operators with only retarded
propagators, which makes each diagram intrinsically local (whereas in the
standard case locality is the result of several cancellations) and endowed with
a straightforward physical interpretation. While the final result is strictly
equivalent, as a bonus the formulation presented here also contains less graphs
than other diagrammatic approaches to in-in correlation functions. Our method
is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version
of axodraw.sty that works with the Revtex4 clas
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range
We survey the phenomenological constraints on abelian gauge bosons having
masses in the MeV to multi-GeV mass range (using precision electroweak
measurements, neutrino-electron and neutrino-nucleon scattering, electron and
muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic
parity violation, low-energy neutron scattering and primordial
nucleosynthesis). We compute their implications for the three parameters that
in general describe the low-energy properties of such bosons: their mass and
their two possible types of dimensionless couplings (direct couplings to
ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue
that gauge bosons with very small couplings to ordinary fermions in this mass
range are natural in string compactifications and are likely to be generic in
theories for which the gravity scale is systematically smaller than the Planck
mass - such as in extra-dimensional models - because of the necessity to
suppress proton decay. Furthermore, because its couplings are weak, in the
low-energy theory relevant to experiments at and below TeV scales the charge
gauged by the new boson can appear to be broken, both by classical effects and
by anomalies. In particular, if the new gauge charge appears to be anomalous,
anomaly cancellation does not also require the introduction of new light
fermions in the low-energy theory. Furthermore, the charge can appear to be
conserved in the low-energy theory, despite the corresponding gauge boson
having a mass. Our results reduce to those of other authors in the special
cases where there is no kinetic mixing or there is no direct coupling to
ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which
appears in JHE
On the effect of resonances in composite Higgs phenomenology
We consider a generic composite Higgs model based on the coset SO(5)/SO(4)
and study its phenomenology beyond the leading low-energy effective lagrangian
approximation. Our basic goal is to introduce in a controllable and simple way
the lowest-lying, possibly narrow, resonances that may exist is such models. We
do so by proposing a criterion that we call partial UV completion. We
characterize the simplest cases, corresponding respectively to a scalar in
either singlet or tensor representation of SO(4) and to vectors in the adjoint
of SO(4). We study the impact of these resonances on the signals associated to
high-energy vector boson scattering, pointing out for each resonance the
characteristic patterns of depletion and enhancement with respect to the
leading-order chiral lagrangian. En route we derive the O(p^4) general chiral
lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange
Theoretical Constraints on the Higgs Effective Couplings
We derive constraints on the sign of couplings in an effective Higgs
Lagrangian using prime principles such as the naturalness principle, global
symmetries, and unitarity. Specifically, we study four dimension-six operators,
O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the
Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming
the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is
positive except when there are triplet scalars, resulting in a reduction in the
Higgs on-shell coupling from their standard model (SM) expectations if no other
operators contribute, 2) the linear combination of O_H and O_y controlling the
overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced
by a new colored fermion is such that it interferes destructively with the SM
top contribution in the gluon fusion production of the Higgs, if the new
fermion cancels the top quadratic divergence in the Higgs mass, and 4) the
correlation between naturalness and the sign of O_gamma is similar to that of
O_g, when there is a new set of heavy electroweak gauge bosons. Next
considering a composite scalar for the Higgs, we find the reduction in the
on-shell Higgs couplings persists. If further assuming a collective breaking
mechanism as in little Higgs theories, the coefficient of O_H remains positive
even in the presence of triplet scalars. In the end, we conclude that the gluon
fusion production of the Higgs boson is reduced from the SM rate in all
composite Higgs models. Our study suggests a wealth of information could be
revealed by precise measurements of the Higgs couplings, providing strong
motivations for both improving on measurements at the LHC and building a
precision machine such as the linear collider.Comment: 37 pages, one figure; v2: improved discussion on dispersion relation
and other minor modifications; version accepted for publication
CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments
We study electroweak baryogenesis and electric dipole moments in the presence
of the two leading-order, non-renormalizable operators in the Higgs sector of
the MSSM. Significant qualitative and quantitative differences from MSSM
baryogenesis arise due to the presence of new CP-violating phases and to the
relaxation of constraints on the supersymmetric spectrum (in particular, both
stops can be light). We find: (1) spontaneous baryogenesis, driven by a change
in the phase of the Higgs vevs across the bubble wall, becomes possible; (2)
the top and stop CP-violating sources can become effective; (3) baryogenesis is
viable in larger parts of parameter space, alleviating the well-known
fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole
moments should be measured if experimental sensitivities are improved by about
one order of magnitude.Comment: 33 pages, 6 figure
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking
We revisit the electroweak precision tests for Higgsless models of strong
EWSB. We use the Vector Meson Dominance approach and express S and T via
couplings characterizing vector and axial spin-1 resonances of the strong
sector. These couplings are constrained by the elastic unitarity and by
requiring a good UV behavior of various formfactors. We pay particular
attention to the one-loop contribution of resonances to T (beyond the chiral
log), and to how it can improve the fit. We also make contact with the recent
studies of Conformal Technicolor. We explain why the second Weinberg sum rule
never converges in these models, and formulate a condition necessary for
preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE
- …
