14,930 research outputs found

    The Effects of Bose-Condensates on Single Inclusive Spectra and Bose-Einstein Correlations

    Full text link
    The implications of the formation of a Bose condensate on one- and two-particle spectra are studied for ultrarelativistic nucleus-nucleus collisions in the framework of a hydrodynamic description. It is found that single particle spectra are considerably enhanced at low momenta. The Bose-Einstein correlation function has an intercept below two. For pion pairs in the central region a two-component structure may appear in the correlation function, which is different from that found in quantum optics. The chaoticity parameter is strongly momentum dependent.Comment: 16 pages, 1 Postscript figur

    Fast Characterization of Dispersion and Dispersion Slope of Optical Fiber Links using Spectral Interferometry with Frequency Combs

    Full text link
    We demonstrate fast characterization (~1.4 microseconds) of both the dispersion and dispersion slope of long optical fiber links (~25 km) using dual quadrature spectral interferometry with an optical frequency comb. Compared to previous spectral interferometry experiments limited to fiber lengths of meters, the long coherence length and the periodic delay properties of frequency combs, coupled with fast data acquisition, enable spectral interferometric characterization of fibers longer by several orders of magnitude. We expect that our method will be useful to recently proposed lightwave techniques like coherent WDM and to coherent modulation formats by providing a real time monitoring capability for the link dispersion. Another area of application would be in stabilization of systems which perform frequency and timing distribution over long fiber links using stabilized optical frequency combs.Comment: 3 pages, 3 figures, Minor changes to tex

    Interactive cutting path analysis programs

    Get PDF
    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file

    Reconfigurable all-diffractive optical filters using phase-only spatial light modulators

    Full text link
    We demonstrate a reconfigurable optical filter implemented using a phase-only two-dimensional liquid crystal on silicon spatial light modulator. To achieve this we utilize two different approaches leading to two different configurations in the modulator. The first one, based on a spatially patterned diffractive lens permits to obtain the desired spectrum along the optical axis and, in the second one, based on a generalized spectrometer, it is found outside of the optical axis. Experimental results show good agreement with the theory and indicate the validity of this technique.Comment: 14 pages, 3 figures, replaced the older version with a newer published versio

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Transient behavior of surface plasmon polaritons scattered at a subwavelength groove

    Get PDF
    We present a numerical study and analytical model of the optical near-field diffracted in the vicinity of subwavelength grooves milled in silver surfaces. The Green's tensor approach permits computation of the phase and amplitude dependence of the diffracted wave as a function of the groove geometry. It is shown that the field diffracted along the interface by the groove is equivalent to replacing the groove by an oscillating dipolar line source. An analytic expression is derived from the Green's function formalism, that reproduces well the asymptotic surface plasmon polariton (SPP) wave as well as the transient surface wave in the near-zone close to the groove. The agreement between this model and the full simulation is very good, showing that the transient "near-zone" regime does not depend on the precise shape of the groove. Finally, it is shown that a composite diffractive evanescent wave model that includes the asymptotic SPP can describe the wavelength evolution in this transient near-zone. Such a semi-analytical model may be useful for the design and optimization of more elaborate photonic circuits whose behavior in large part will be controlled by surface waves.Comment: 12 pages, 10 figure
    corecore