305 research outputs found
Security: Collective good or commodity?
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 Sage.The state monopoly on the legitimate use of violence in Europe and North America has been central to the development of security as a collective good. Not only has it institutionalized the state as the prime national and international security provider, it has helped to reduce the threat from other actors by either prohibiting or limiting their use of violence. The recent growth of the private security industry appears to undermine this view. Not only are private security firms proliferating at the national level; private military companies are also taking over an increasing range of military functions in both national defence and international interventions. This article seeks to provide an examination of the theoretical and practical implications of the shift from states to markets in the provision of security. Specifically, it discusses how the conceptualization of security as a commodity rather than a collective good affects the meaning and implementation of security in Western democracies.ESR
Recommended from our members
Atomoxetine increases phosphorylation of Ser1928 onCav1.2 in the frontal cortex via D1/5R activation
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in
Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
Recommended from our members
Anatomical Localization, Gene Expression Profiling, and Functional Characterization of Adult Human Neck Brown Fat
THISTLE:trial of hands-on Interprofessional simulation training for local emergencies: a research protocol for a stepped-wedge clustered randomised controlled trial
Peer reviewedPublisher PD
Landesque capital as an alternative to food storage in Melanesia: Irrigated taro terraces in New Georgia, Solomon Islands
In the Pacific islands, subsistence diversity made possible continuous production of food while welldeveloped exchange networks redistributed these foodstuffs as well as items within the prestige economy. All these were aspects of the ‘storage structures’ that enabled social and nutritional value to be saved, accumulated and later mobilised. In addition, there were investments in the land, landesque capital, which secured future food surpluses and so provided an alternative to food storage, in a region where the staple foods were mostly perishable, yams excepted, and food preservation was difficult. Landesque capital included such long-term improvements to productivity as terraces, mounds, irrigation channels, drainage ditches, soil structural changes and tree planting. These investments provided an effective alternative to food storage and made possible surplus production for exchange purposes. As an example, in the New Georgia group of the western Solomon Islands irrigated terraces, termed ruta, were constructed for growing the root crop taro (Colocasia esculenta). Surplus taro from ruta enabled inland groups to participate in regional exchange networks and so obtain the shell valuables that were produced by coastal groups. In this paper, we reconstruct how this exchange system worked in New Georgia using ethno-archaeological evidence, we chart its prehistoric rise and post-colonial fall, and we outline the factors that constrained its long-term expansion.Our gratitude for support during earlier fieldwork in the New Georgia group has already been expressed in previous publications. The 2014 project was supported by the Smuts Fund and Foreign Travel Fund, University of Cambridge, and by St John’s College, Cambridge.This is the accepted manuscript. The final version is available from Maney at http://dx.doi.org/10.1179/1749631414Y.000000004
Insights and lessons learned from a prospective clinical pharmacology study in allogeneic hematopoietic stem cell transplant during the COVID‐19 pandemic
To develop the first population pharmacokinetic (PopPK) model for oral tacrolimus in adult allogeneic hematopoietic cell transplant (allo-HCT) recipients, we conducted a prospective clinical pharmacology study among real-world patients (NCT04645667). This commentary describes the challenges associated with planning and executing the clinical pharmacology study during the global pandemic, and provides insights on how to effectively communicate, remain adaptable to institutional changes, improve consent rate, and to accommodate new clinical workflows and coronavirus disease 2019 (COVID-19) safety precautions without compromising the scientific integrity of the study
The Clustering and Halo Masses of Star Forming Galaxies at z<1
We present clustering measurements and halo masses of star forming galaxies
at 0.2 < z < 1.0. After excluding AGN, we construct a sample of 22553 24 {\mu}m
sources selected from 8.42 deg^2 of the Spitzer MIPS AGN and Galaxy Evolution
Survey of Bo\"otes. Mid-infrared imaging allows us to observe galaxies with the
highest star formation rates (SFRs), less biased by dust obscuration afflicting
the optical bands. We find that the galaxies with the highest SFRs have optical
colors which are redder than typical blue cloud galaxies, with many residing
within the green valley. At z > 0.4 our sample is dominated by luminous
infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of
LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z >
0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star
forming samples. We find that the clustering and halo mass depend on L_TIR at
all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have
stronger clustering. Galaxies with the highest SFRs at each redshift typically
reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent
with a transitional halo mass, above which star formation is largely truncated,
although we cannot exclude that ULIRGs reside within higher mass halos. By
modeling the clustering evolution of halos, we connect our star forming galaxy
samples to their local descendants. Most star forming galaxies at z < 1.0 are
the progenitors of L < 2.5L* blue galaxies in the local universe, but star
forming galaxies with the highest SFRs (L_TIR >10^11.7 Lsun) at 0.6<z<1.0 are
the progenitors of early-type galaxies in denser group environments.Comment: 18 pages, 16 figures, 2 tables. Accepted for publication in the
Astrophysical Journa
Confab - Systematic generation of diverse low-energy conformers
<p>Abstract</p> <p>Background</p> <p>Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion.</p> <p>Results</p> <p>Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD) relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol.</p> <p>Conclusions</p> <p>Confab is available from <url>http://confab.googlecode.com</url>.</p
Recommended from our members
NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems
NADP(H) is a central metabolic hub providing reducing equivalents to multiple biosynthetic, regulatory and antioxidative pathways in all living organisms. While biosensors are available to determine NADP+ or NADPH levels in vivo, no probe exists to estimate the NADP(H) redox status, a determinant of the cell energy availability. We describe herein the design and characterization of a genetically-encoded ratiometric biosensor, termed NERNST, able to interact with NADP(H) and estimate E NADP(H). NERNST consists of a redox-sensitive green fluorescent protein (roGFP2) fused to an NADPH-thioredoxin reductase C module which selectively monitors NADP(H) redox states via oxido-reduction of the roGFP2 moiety. NERNST is functional in bacterial, plant and animal cells, and organelles such as chloroplasts and mitochondria. Using NERNST, we monitor NADP(H) dynamics during bacterial growth, environmental stresses in plants, metabolic challenges to mammalian cells, and wounding in zebrafish. NERNST estimates the NADP(H) redox poise in living organisms, with various potential applications in biochemical, biotechnological and biomedical research
- …
