2,521 research outputs found
The Centaurus Group and the Outer Halo of NGC 5128: Are they Dynamically Connected?
NGC 5128, a giant elliptical galaxy only Mpc away, is the dominant
member of a galaxy group of over 80 probable members. The Centaurus group
provides an excellent sample for a kinematic comparison between the halo of NGC
5128 and its surrounding satellite galaxies. A new study, presented here, shows
no kinematic difference in rotation amplitude, rotation axis, and velocity
dispersion between the halo of NGC 5128, determined from over of its
globular clusters, and those of the Centaurus group as a whole. These results
suggest NGC 5128 could be behaving in part as the inner component to the galaxy
group, and could have begun as a large initial seed galaxy, gradually built up
by minor mergers and satellite accretions, consistent with simple cold dark
matter models. The mass and mass-to-light ratios in the B-band, corrected for
projection effects, are determined to be
M_{\sun} and M_{\sun}/L_{\sun} for NGC 5128 out to a
galactocentric radius of 45 kpc, and M_{\sun}
and M_{\sun}/L_{\sun} for the Centaurus group, consistent with
previous studies.Comment: 14 pages, 3 tables, 7 figures, Accepted for publication in A
Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes
Experimentally, the phase of the amplitude for electron transmission through
a quantum dot (transmission phase) shows the same pattern between consecutive
resonances. Such universal behavior, found for long sequences of resonances, is
caused by correlations of the signs of the partial-width amplitudes of the
resonances. We investigate the stability of these correlations in terms of a
statistical model. For a classically chaotic dot, the resonance eigenfunctions
are assumed to be Gaussian distributed. Under this hypothesis, statistical
fluctuations are found to reduce the tendency towards universal phase
evolution. Long sequences of resonances with universal behavior only persist in
the semiclassical limit of very large electron numbers in the dot and for
specific energy intervals. Numerical calculations qualitatively agree with the
statistical model but quantitatively are closer to universality.Comment: 8 pages, 4 figure
Partial local density of states from scanning gate microscopy
Scanning gate microscopy images from measurements made in the vicinity of
quantum point contacts were originally interpreted in terms of current flow.
Some recent work has analytically connected the local density of states to
conductance changes in cases of perfect transmission, and at least
qualitatively for a broader range of circumstances. In the present paper, we
show analytically that in any time-reversal invariant system there are
important deviations that are highly sensitive to imperfect transmission.
Nevertheless, the unperturbed partial local density of states can be extracted
from a weakly invasive scanning gate microscopy experiment, provided the
quantum point contact is tuned anywhere on a conductance plateau. A
perturbative treatment in the reflection coefficient shows just how sensitive
this correspondence is to the departure from the quantized conductance value
and reveals the necessity of local averaging over the tip position. It is also
shown that the quality of the extracted partial local density of states
decreases with increasing tip radius.Comment: 16 pages, 9 figure
Intermediate Regime between the Fermi Glass and the Mott Insulator in one Dimension
We consider the ground state reorganization driven by an increasing nearest
neighbor repulsion U for spinless fermions in a strongly disordered ring. When
U -> 0, the electrons form a glass with Anderson localized states. At half
filling, a regular array of charges (Mott insulator) is pinned by the random
substrate when U -> \infty. Between those two insulating limits, we show that
there is an intermediate regime where the electron glass becomes more liquid
before crystallizing. The liquid-like behavior of the density-density
correlation function is accompanied by an enhancement of the persistent
current.Comment: 5 pages, Latex, uses moriond.sty (included), Contribution to the
Proceedings of the Rencontres de Moriond 199
Nonradiative limitations to plasmon propagation in chains of metallic nanoparticles
We investigate the collective plasmonic modes in a chain of metallic
nanoparticles that are coupled by near-field interactions. The size- and
momentum-dependent nonradiative Landau damping and radiative decay rates are
calculated analytically within an open quantum system approach. These decay
rates determine the excitation propagation along the chain. In particular, the
behavior of the radiative decay rate as a function of the plasmon wavelength
leads to a transition from an exponential decay of the collective excitation
for short distances to an algebraic decay for large distances. Importantly, we
show that the exponential decay is of a purely nonradiative origin. Our
transparent model enables us to provide analytical expressions for the
polarization-dependent plasmon excitation profile along the chain and for the
associated propagation length. Our theoretical analysis constitutes an
important step in the quest for the optimal conditions for plasmonic
propagation in nanoparticle chains.Comment: 14 pages, 6 figures; v2: published versio
Theory of scanning gate microscopy
A systematic theory of the conductance measurements of non-invasive (weak
probe) scanning gate microscopy is presented that provides an interpretation of
what precisely is being measured. A scattering approach is used to derive
explicit expressions for the first and second order conductance changes due to
the perturbation by the tip potential in terms of the scattering states of the
unperturbed structure. In the case of a quantum point contact, the first order
correction dominates at the conductance steps and vanishes on the plateaus
where the second order term dominates. Both corrections are non-local for a
generic structure. Only in special cases, such as that of a centrally symmetric
quantum point contact in the conductance quantization regime, can the second
order correction be unambiguously related with the local current density. In
the case of an abrupt quantum point contact we are able to obtain analytic
expressions for the scattering eigenfunctions and thus evaluate the resulting
conductance corrections.Comment: 19 pages, 7 figure
A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques
We present a circuit model to describe the electron transport through a
domain wall in a ferromagnetic nanowire. The domain wall is treated as a
coherent 4-terminal device with incoming and outgoing channels of spin up and
down and the spin-dependent scattering in the vicinity of the wall is modelled
using classical resistances. We derive the conductance of the circuit in terms
of general conductance parameters for a domain wall. We then calculate these
conductance parameters for the case of ballistic transport through the domain
wall, and obtain a simple formula for the domain wall magnetoresistance which
gives a result consistent with recent experiments. The spin transfer torque
exerted on a domain wall by a spin-polarized current is calculated using the
circuit model and an estimate of the speed of the resulting wall motion is
made.Comment: 10 pages, 5 figures; submitted to Physical Review
Electron backscattering in a cavity: ballistic and coherent effects
Numerous experimental and theoretical studies have focused on low-dimensional
systems locally perturbed by the biased tip of a scanning force microscope. In
all cases either open or closed weakly gate-tunable nanostructures have been
investigated, such as quantum point contacts, open or closed quantum dots, etc.
We study the behaviour of the conductance of a quantum point contact with a
gradually forming adjacent cavity in series under the influence of a scanning
gate. Here, an initially open quantum point contact system gradually turns into
a closed cavity system. We observe branches and interference fringes known from
quantum point contacts coexisting with irregular conductance fluctuations.
Unlike the branches, the fluctuations cover the entire area of the cavity. In
contrast to previous studies, we observe and investigate branches under the
influence of the confining stadium potential, which is gradually built up. We
find that the branches exist only in the area surrounded by cavity top gates.
As the stadium shrinks, regular fringes originate from tip-induced
constrictions leading to quantized conduction. In addition, we observe arc-like
areas reminiscent of classical electron trajectories in a chaotic cavity. We
also argue that electrons emanating from the quantum point contact spread out
like a fan leaving branch-like regions of enhanced backscattering.Comment: 7 pages, 4 figure
Total Generalized Variation for Manifold-valued Data
In this paper we introduce the notion of second-order total generalized
variation (TGV) regularization for manifold-valued data in a discrete setting.
We provide an axiomatic approach to formalize reasonable generalizations of TGV
to the manifold setting and present two possible concrete instances that
fulfill the proposed axioms. We provide well-posedness results and present
algorithms for a numerical realization of these generalizations to the manifold
setup. Further, we provide experimental results for synthetic and real data to
further underpin the proposed generalization numerically and show its potential
for applications with manifold-valued data
Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes
We study electron transport through a domain wall in a ferromagnetic nanowire
subject to spin-dependent scattering. A scattering matrix formalism is
developed to address both coherent and incoherent transport properties. The
coherent case corresponds to elastic scattering by static defects, which is
dominant at low temperatures, while the incoherent case provides a
phenomenological description of the inelastic scattering present in real
physical systems at room temperature. It is found that disorder scattering
increases the amount of spin-mixing of transmitted electrons, reducing the
adiabaticity. This leads, in the incoherent case, to a reduction of conductance
through the domain wall as compared to a uniformly magnetized region which is
similar to the giant magnetoresistance effect. In the coherent case, a
reduction of weak localization, together with a suppression of spin-reversing
scattering amplitudes, leads to an enhancement of conductance due to the domain
wall in the regime of strong disorder. The total effect of a domain wall on the
conductance of a nanowire is studied by incorporating the disordered regions on
either side of the wall. It is found that spin-dependent scattering in these
regions increases the domain wall magnetoconductance as compared to the effect
found by considering only the scattering inside the wall. This increase is most
dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure
- …
