630 research outputs found
Towards the deformation quantization of linearized gravity
We present a first attempt to apply the approach of deformation quantization
to linearized Einstein's equations. We use the analogy with Maxwell equations
to derive the field equations of linearized gravity from a modified Maxwell
Lagrangian which allows the construction of a Hamiltonian in the standard way.
The deformation quantization procedure for free fields is applied to this
Hamiltonian. As a result we obtain the complete set of quantum states and its
discrete spectrum.Comment: 13 pages, no figures **preliminary entry **
Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases
We analyze the ground-state properties and the excitation spectrum of
Bose-Einstein condensates of trapped dipolar particles. First, we consider the
case of a single-component polarized dipolar gas. For this case we discuss the
influence of the trapping geometry on the stability of the condensate as well
as the effects of the dipole-dipole interaction on the excitation spectrum. We
discuss also the ground state and excitations of a gas composed of two
antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio
Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation
Using density functional molecular dynamics simulations, we analyze the
broken chemical order in a GeS glass and its impact on the dynamical
properties of the glass through the in-depth study of the vibrational
eigenvectors. We find homopolar bonds and the frequencies of the corresponding
modes are in agreement with experimental data. Localized S-S modes and 3-fold
coordinated sulfur atoms are found to be at the origin of specific Raman peaks
whose origin was not previously clear. Through the ring size statistics we
find, during the glass formation, a conversion of 3-membered rings into larger
units but also into 2-membered rings whose vibrational signature is in
agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.
Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases
Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are
studied via mean-field theory. We show that an infinitesimal value of the
coupling can induce a FM phase transition at a finite temperature always above
the critical temperature of Bose-Einstein condensation. This contrasts sharply
with the case of Fermi gases, in which the Stoner coupling can not lead
to a FM phase transition unless it is larger than a threshold value . The
FM coupling also increases the critical temperatures of both the ferromagnetic
transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure
Quark exchange model for charmonium dissociation in hot hadronic matter
A diagrammatic approach to quark exchange processes in meson-meson scattering
is applied to the case of inelastic reactions of the type
(Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where and refer to
heavy and light quarks, respectively. This string-flip process is discussed as
a microscopic mechanism for charmonium dissociation (absorption) in hadronic
matter. The cross section for the reaction is
calculated using a potential model, which is fitted to the meson mass spectrum.
The temperature dependence of the relaxation time for the \J/Psi distribution
in a homogeneous thermal pion gas is obtained. The use of charmonium for the
diagnostics of the state of hot hadronic matter produced in ultrarelativistic
nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Tunneling of quantum rotobreathers
We analyze the quantum properties of a system consisting of two nonlinearly
coupled pendula. This non-integrable system exhibits two different symmetries:
a permutational symmetry (permutation of the pendula) and another one related
to the reversal of the total momentum of the system. Each of these symmetries
is responsible for the existence of two kinds of quasi-degenerated states. At
sufficiently high energy, pairs of symmetry-related states glue together to
form quadruplets. We show that, starting from the anti-continuous limit,
particular quadruplets allow us to construct quantum states whose properties
are very similar to those of classical rotobreathers. By diagonalizing
numerically the quantum Hamiltonian, we investigate their properties and show
that such states are able to store the main part of the total energy on one of
the pendula. Contrary to the classical situation, the coupling between pendula
necessarily introduces a periodic exchange of energy between them with a
frequency which is proportional to the energy splitting between
quasi-degenerated states related to the permutation symmetry. This splitting
may remain very small as the coupling strength increases and is a decreasing
function of the pair energy. The energy may be therefore stored in one pendulum
during a time period very long as compared to the inverse of the internal
rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl
- …
