3,657 research outputs found
Superconducting Fluxon Pumps and Lenses
We study stochastic transport of fluxons in superconductors by alternating
current (AC) rectification. Our simulated system provides a fluxon pump,
"lens", or fluxon "rectifier" because the applied electrical AC is transformed
into a net DC motion of fluxons. Thermal fluctuations and the asymmetry of the
ratchet channel walls induce this "diode" effect, which can have important
applications in devices, like SQUID magnetometers, and for fluxon optics,
including convex and concave fluxon lenses. Certain features are unique to this
novel two-dimensional (2D) geometric pump, and different from the previously
studied 1D ratchets.Comment: Phys. Rev. Lett. 83, in press (1999); 4 pages, 5 .gif figures;
figures also available at http://www-personal.engin.umich.edu/~nori/ratche
Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer
SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness
Exploring patterns of recurrent melanoma in Northeast Scotland to inform the introduction a digital self-examination intervention
Peer reviewedPublisher PD
Reduction of circulating cholesterol and apolipoprotein levels during sepsis
Sepsis with multiple organ failure is frequently associated with a substantial decrease of cholesterol levels. This decrease of cholesterol is strongly associated with mortality suggesting a direct relation between inflammatory conditions and altered cholesterol homeostasis. The host response during sepsis is mediated by cytokines and growth factors, which are capable of influencing lipid metabolism. Conversely lipoproteins are also capable of modulating cytokine production during the inflammatory response. Therefore the decrease in circulating cholesterol levels seems to play a crucial role in the pathophysiology of sepsis. In this review the interaction between cytokines and lipid metabolism and its clinical consequences will be discussed
Recommended from our members
Health care system planning for and response to a nuclear detonation
The hallmark of a successful response to a nuclear detonation will be the resilience of the community, region, and nation. An incident of this magnitude will rapidly become a national incident; however, the initial critical steps to reduce lives lost, save the lives that can be saved with the resources available, and understand and apply resources available to a complex and dynamic situation will be the responsibility of the local and regional responders and planners. Expectations of the public health and health care systems will be met to the extent possible by coordination, cooperation, and an effort to produce as consistent a response as possible for the victims. Responders will face extraordinarily stressful situations, and their own physical and psychological health is of great importance to optimizing the response. This article illustrates through vignettes and supporting text how the incident may unfold for the various components of the health and medical systems and provides additional context for the discipline-related actions outlined in the state and local planners’ playbook
Space-time versus particle-hole symmetry in quantum Enskog equations
The non-local scattering-in and -out integrals of the Enskog equation have
reversed displacements of colliding particles reflecting that the -in and -out
processes are conjugated by the space and time inversions. Generalisations of
the Enskog equation to Fermi liquid systems are hindered by a request of the
particle-hole symmetry which contradicts the reversed displacements. We resolve
this problem with the help of the optical theorem. It is found that space-time
and particle-hole symmetry can only be fulfilled simultaneously for the
Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form
allows only for particle-hole symmetry but not for space-time symmetry due to a
stimulated emission of Bosons
Relativity principles in 1+1 dimensions and differential aging reversal
We study the behavior of clocks in 1+1 spacetime assuming the relativity
principle, the principle of constancy of the speed of light and the clock
hypothesis. These requirements are satisfied by a class of Finslerian theories
parametrized by a real coefficient , special relativity being recovered
for . The effect of differential aging is studied for the different
values of . Below the critical values the differential
aging has the usual direction - after a round trip the accelerated observer
returns younger than the twin at rest in the inertial frame - while above the
critical values the differential aging changes sign. The non-relativistic case
is treated by introducing a formal analogy with thermodynamics.Comment: 12 pages, no figures. Previous title "Parity violating terms in
clocks' behavior and differential aging reversal". v2: shortened
introduction, some sections removed, pointed out the relation with Finsler
metrics. Submitted to Found. Phys. Let
Public health engagement: detection of suspicious skin lesions, screening and referral behaviour of UK based chiropractors.
BACKGROUND: UK morbidity and mortality rates from skin cancer are increasing despite existing preventative strategies involving education and early detection. Manual therapists are ideally placed to support these goals as they see greater quantities of exposed patient skin more often than most other healthcare professionals. The purpose of this study therefore was to ascertain the ability of manual therapists to detect, screen and refer suspicious skin lesions. METHOD: A web-based questionnaire and quiz was used in a sample of UK chiropractic student clinicians and registered chiropractors to gather data during 2011 concerning skin screening and referral behaviors for suspicious skin lesions. RESULTS: A total of 120 questionnaires were included. Eighty one percent of participants agreed that screening for suspicious skin lesions was part of their clinical role, with nearly all (94%) assessing their patients for lesions during examination. Over 90% of the participants reported regularly having the opportunity for skin examination; with nearly all (98%) agreeing they would refer patients with suspicious skin lesions to a medical practitioner. A third of respondents had referred a total of 80 suspicious lesions within the last 12 months with 67% warranting further investigation. CONCLUSIONS: Nearly all respondents agreed that screening patients for suspicious skin lesions was part of their clinical role, with a significant number already referring patients with lesions
Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847
- …
