1,360 research outputs found

    Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels

    Get PDF
    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df ) of the fibrin network, the gel network formation time (TGP ) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df , consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties

    An updated analysis of NN elastic scattering data to 1.6 GeV

    Full text link
    An energy-dependent and set of single-energy partial-wave analyses of NNNN elastic scattering data have been completed. The fit to 1.6~GeV has been supplemented with a low-energy analysis to 400 MeV. Using the low-energy fit, we study the sensitivity of our analysis to the choice of πNN\pi NN coupling constant. We also comment on the possibility of fitting npnp data alone. These results are compared with those found in the recent Nijmegen analyses. (Figures may be obtained from the authors upon request.)Comment: 17 pages of text, VPI-CAPS-7/

    Tournaments and piece rates revisited: a theoretical and experimental study of output-dependent prize tournaments

    Get PDF
    Tournaments represent an increasingly important component of organizational compensation systems. While prior research focused on fixed-prize tournaments where the prize to be awarded is set in advance, we introduce ‘output-dependent prizes’ where the tournament prize is endogenously determined by agents’ output—it is high when the output is high and low when the output is low. We show that tournaments with output-dependent prizes outperform fixed-prize tournaments and piece rates. A multi-agent experiment supports the theoretical result

    Politicians lie, so do I

    Get PDF
    This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another stimulus. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liar) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (inc. general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e. bigger lies) and frequency (i.e. lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights to organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition
    corecore