1,066 research outputs found

    Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    Get PDF
    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage

    Automatic guiding of the primary image of solar Gregory telescopes

    Get PDF
    The primary image reflected from the field-stop of solar Gregory telescopes is used for automatic guiding. This new system avoids temporal varying influences from the bending of the telescope tube by the main mirror's gravity and from offsets between the telescope and a separate guiding refractor. The required stiffness of the guider mechanics and the small areas of the sensors demand small f-numbers for the guider optics, which cause problems with the image quality and with heat. Problems also arise from the imaging of the pinhole in the telescope's field stop. The corresponding lack of image information at that location can be reduced numerically by Fourier methods much more effectively than with profile centering methods. Several types of such guiders are tested, a final equipment, now installed at the Gregory telescopes at Tenerife and at Locarno, is described

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Spectroscopy of 35^{35}P using the one-proton knockout reaction

    Get PDF
    The structure of 35^{35}P was studied with a one-proton knockout reaction at88~MeV/u from a 36^{36}S projectile beam at NSCL. The γ\gamma rays from thedepopulation of excited states in 35^{35}P were detected with GRETINA, whilethe 35^{35}P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of 35^{35}P was deduced up to 7.5 MeV usingγγ\gamma-\gamma coincidences. The observed levels were attributed to protonremovals from the sdsd-shell and also from the deeply-bound p_1/2p\_{1/2} orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual (γ\gamma-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, C2SC^2S, derived from the36^{36}S (1p)(-1p) knockout reaction agree with those obtained earlier from36^{36}S(dd,\nuc{3}{He}) transfer, if a reduction factor R_sR\_s, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the (dd,\nuc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review

    Spectroscopy of neutron-unbound 27,28^{27,28}F

    Full text link
    The ground state of 28^{28}F has been observed as an unbound resonance 2202\underline{2}0 keV above the ground state of 27^{27}F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the 28^{28}F ground state is primarily dominated by sdsd-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of 28^{28}F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in 27^{27}F at an excitation energy of 2500(220)25\underline{0}0 (2\underline{2}0) keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.

    Exploring the Low-ZZ Shore of the Island of Inversion at N=19N = 19

    Get PDF
    The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound 28F,^{28}\textrm{F}, determined to be a resonance in the 27F+n^{27}\textrm{F} + n continuum at 220(50)2\underline{2}0 (\underline{5}0) keV. States in 28F^{28}\textrm{F} were populated by the reactions of a 62 MeV/u 29Ne^{29}\textrm{Ne} beam impinging on a 288 mg/cm2\textrm{mg/cm}^2 beryllium target. The measured 28F^{28}\textrm{F} ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pfpf shell intruder configurations play only a small role in the ground state structure of 28F^{28}\textrm{F} and establishing a low-ZZ boundary of the island of inversion for N=19 isotones.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Correlations in intermediate-energy two-proton removal reactions

    Full text link
    We report final-state-exclusive measurements of the light charged fragments in coincidence with 26Ne residual nuclei following the direct two-proton removal from a neutron-rich 28Mg secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple- coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially-correlated pair-removal mechanism. The fraction of such correlated events, 56(12) %, is consistent with the fraction of the calculated cross section, 64 %, arising from spin S = 0 two-proton configurations in the entrance-channel (shell-model) 28Mg ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.Comment: accepted for publication in Physical Review Letter

    Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    Get PDF
    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter
    corecore