400 research outputs found
Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines
Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclic motion of the blades induces large variations in the angle of attack on the blades that can manifest as dynamic stall. The present paper describes the application of a numerical model that is based on the vorticity transport formulation of the Navier–Stokes equations, to the prediction of the aerodynamics of a verticalaxis wind turbine that consists of three curved rotor blades that are twisted helically around the rotational axis of the rotor. The predicted variation of the power coefficient with tip speed ratio compares very favorably with experimental measurements. It is demonstrated that helical blade twist reduces the oscillation of the power coefficient that is an inherent feature of turbines with non-twisted blade configurations
Disease classification from capillary electrophoresis: mass spectrometry
We investigate the possibility of using pattern recognition techniques to classify various disease types using data produced by a new form of rapid Mass Spectrometry. The data format has several advantages over other high-throughput technologies and as such could become a useful diagnostic tool. We investigate the binary and multi-class performances obtained using standard classifiers as the number of features is varied and conclude that there is potential in this technique and suggest research directions that would improve performance
Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation
Invasive aspergillosis (IA) is a major threat to positive outcomes for allogeneic stem-cell transplantation (allo-SCT) patients. Despite presenting similar degrees of immunosuppression, not all individuals at-risk ultimately develop infection. Therefore, the traditional view of neutropenia as a key risk factor for aspergillosis needs to be accommodated within new conceptual advances on host immunity and its relationship to infection. Polymorphisms in innate immune genes, such as those encoding TLRs, cytokines and cytokine receptors, have recently been associated with susceptibility to IA in allo-SCT recipients. This suggests that understanding host-pathogen interactions at the level of host genetic susceptibility will allow the formulation of new targeted and patient-tailored antifungal therapeutics, including improved donor screening.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/65962/2009, SFRH/BPD/46292/2008Specific Targeted Research Projects MANASP (LSHE-CT-2006), contract number 037899 (FP6), Italian Project PRIN2007KLCKP8_004
Polyfunctionality of CD4+ T lymphocytes is increased after chemoradiotherapy of head and neck squamous cell carcinoma
Treatment-induced changes of lymphocyte subsets in patients with adenoid cystic carcinoma of the head and neck
Activation of innate and adaptive immunity by a recombinant human cytomegalovirus strain expressing an NKG2D ligand
Development of an effective vaccine against human cytomegalovirus (HCMV) is a need of utmost medical importance. Generally, it is believed that a live attenuated vaccine would best provide protective immunity against this tenacious pathogen. Here, we propose a strategy for an HCMV vaccine that aims at the simultaneous activation of innate and adaptive immune responses. An HCMV strain expressing the host ligand ULBP2 for the NKG2D receptor was found to be susceptible to control by natural killer (NK) cells, and preserved the ability to stimulate HCMV-specific T cells. Infection with the ULBP2-expressing HCMV strain caused diminished cell surface levels of MHC class I molecules. While expression of the NKG2D ligand increased the cytolytic activity of NK cells, NKG2D engagement in CD8+ T cells provided co-stimulation and compensated for lower MHC class I expression. Altogether, our data indicate that triggering of both arms of the immune system is a promising approach applicable to the generation of a live attenuated HCMV vaccine
Changes in gene expression patterns in the tumor microenvironment of head and neck squamous cell carcinoma under chemoradiotherapy depend on response
Chemoradiotherapy (CRT) is a standard treatment for advanced head and neck squamous cell carcinoma (HNSCC). Unfortunately, not all patients respond to this therapy and require further treatment, either salvage surgery or palliative therapy. The addition of immunotherapy to CRT is currently being investigated and early results describe a mixed response. Therefore, it is important to understand the impact of CRT on the tumor microenvironment (TME) to be able to interpret the results of the clinical trials. Paired biopsies from 30 HNSCC patients were collected before and three months after completion of primary CRT and interrogated for the expression of 1392 immune- and cancer-related genes. There was a relevant difference in the number of differentially expressed genes between the total cohort and patients with residual disease. Genes involved in T cell activation showed significantly reduced expression in these tumors after therapy. Furthermore, gene enrichment for several T cell subsets confirmed this observation. The analysis of tissue resident memory T cells (TRM) did not show a clear association with impaired response to therapy. CRT seems to lead to a loss of T cells in patients with incomplete response that needs to be reversed. It is not clear whether the addition of anti-PD-1 antibodies alone to CRT can prevent treatment failure, as no upregulation of the targets was measurable in the TME
Characterization of human cytomegalovirus genome diversity in immunocompromised hosts by whole genomic sequencing directly from clinical specimens
Background:
Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals.
Methods:
NGS was performed on target-enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast-milk, respiratory samples, biopsies and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients and congenitally infected children).
Results:
De novo assembled HCMV genome sequences were obtained for 57/68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intra-individual blood samples from 9/15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in six individuals with sequential blood samples and upon compartmental analysis of one patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral resistance mutations.
Conclusions:
In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection
Clinical utility of a protein-based oncopanel in patients with end-stage head and neck cancer
Immune checkpoint expression on immune cells of HNSCC patients and modulation by chemo- and immunotherapy
Endogenous control mechanisms, including immune checkpoints and immunosuppressive cells, are exploited in the process of tumorigenesis to weaken the anti-tumor immune response. Cancer treatment by chemotherapy or immune checkpoint inhibition can lead to changes of checkpoint expression, which influences therapy success. Peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) were isolated from head and neck squamous cell carcinoma (HNSCC) patients (n = 23) and compared to healthy donors (n = 23). Immune checkpoint expression (programmed cell death ligand 1 (PD-1), tumor necrosis factor receptor (TNFR)-related (GITR), CD137, tumor necrosis factor receptor superfamily member 4 (TNFRSF4) (OX40), t-cell immunoglobulin and mucin-domain containing-3 (TIM3), B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation gene 3 (LAG3)) was determined on immune cells by flow cytometry. PD-L1 expression was detected on tumor tissue by immunohistochemistry. Immune cells were treated with immuno- and chemotherapeutics to investigate treatment-specific change in immune checkpoint expression, in vitro. Specific changes of immune checkpoint expression were identified on PBL and TIL of HNSCC patients compared to healthy donors. Various chemotherapeutics acted differently on the expression of immune checkpoints. Changes of checkpoint expression were significantly less pronounced on regulatory T cells compared to other lymphocyte populations. Nivolumab treatment significantly reduced the receptor PD-1 on all analyzed T cell populations, in vitro. The specific immune checkpoint expression patterns in HNSCC patients and the investigated effects of immunomodulatory agents may improve the development and efficacy of targeted immunotherapy
- …
