4,856 research outputs found
The geology of the Venera/Vega landing sites
We have performed a photogeological analysis of the Venera Vega landing sites using Magellan radar images. These seven sites are the only places on Venus where geochemistry measurements were taken. In this study, the updated coordinates of the landing sites are used and the landing circle has a radius with an admissible error of about 150 km
Largest impact craters on Venus
High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed
Triple junction at the triple point resolved on the individual particle level
At the triple point of a repulsive screened Coulomb system, a
face-centered-cubic (fcc) crystal, a body-centered-cubic (bcc) crystal and a
fluid phase coexist. At their intersection, these three phases form a liquid
groove, the triple junction. Using confocal microscopy, we resolve the triple
junction on a single particle level in a model system of charged PMMA colloids
in a nonpolar solvent. The groove is found to be extremely deep and the
incommensurate solid-solid interface to be very broad. Thermal fluctuations
hence appear to dominate the solid-solid interface. This indicates a very low
interfacial energy. The fcc-bcc interfacial energy is quantitatively determined
based on Young's equation and, indeed, it is only about 1.3 times higher than
the fcc-fluid interfacial energy close to the triple point
Microwave Dielectric Heating of Drops in Microfluidic Devices
We present a technique to locally and rapidly heat water drops in
microfluidic devices with microwave dielectric heating. Water absorbs microwave
power more efficiently than polymers, glass, and oils due to its permanent
molecular dipole moment that has a large dielectric loss at GHz frequencies.
The relevant heat capacity of the system is a single thermally isolated
picoliter drop of water and this enables very fast thermal cycling. We
demonstrate microwave dielectric heating in a microfluidic device that
integrates a flow-focusing drop maker, drop splitters, and metal electrodes to
locally deliver microwave power from an inexpensive, commercially available 3.0
GHz source and amplifier. The temperature of the drops is measured by observing
the temperature dependent fluorescence intensity of cadmium selenide
nanocrystals suspended in the water drops. We demonstrate characteristic
heating times as short as 15 ms to steady-state temperatures as large as 30
degrees C above the base temperature of the microfluidic device. Many common
biological and chemical applications require rapid and local control of
temperature, such as PCR amplification of DNA, and can benefit from this new
technique.Comment: 6 pages, 4 figure
Study of effects of fuel properties in turbine-powered business aircraft
Increased interest in research and technology concerning aviation turbine fuels and their properties was prompted by recent changes in the supply and demand situation of these fuels. The most obvious change is the rapid increase in fuel price. For commercial airplanes, fuel costs now approach 50 percent of the direct operating costs. In addition, there were occasional local supply disruptions and gradual shifts in delivered values of certain fuel properties. Dwindling petroleum reserves and the politically sensitive nature of the major world suppliers make the continuation of these trends likely. A summary of the principal findings, and conclusions are presented. Much of the material, especially the tables and graphs, is considered in greater detail later. The economic analysis and examination of operational considerations are described. Because some of the assumptions on which the economic analysis is founded are not easily verified, the sensitivity of the analysis to alternates for these assumptions is examined. The data base on which the analyses are founded is defined in a set of appendices
Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts
Starting with stochastic rate equations for the fundamental interactions
between microbes and their viruses, we derive a mean field theory for the
population dynamics of microbe-virus systems, including the effects of
lysogeny. In the absence of lysogeny, our model is a generalization of that
proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny,
we analyze the possible states of the system, identifying a novel limit cycle,
which we interpret physically. To test the robustness of our mean field
calculations to demographic fluctuations, we have compared our results with
stochastic simulations using the Gillespie algorithm. Finally, we estimate the
range of parameters that delineate the various steady states of our model.Comment: 20 pages, 16 figures, 4 table
Grain Boundary Scars and Spherical Crystallography
We describe experimental investigations of the structure of two-dimensional
spherical crystals. The crystals, formed by beads self-assembled on water
droplets in oil, serve as model systems for exploring very general theories
about the minimum energy configurations of particles with arbitrary repulsive
interactions on curved surfaces. Above a critical system size we find that
crystals develop distinctive high-angle grain boundaries, or scars, not found
in planar crystals. The number of excess defects in a scar is shown to grow
linearly with the dimensionless system size. The observed slope is expected to
be universal, independent of the microscopic potential.Comment: 4 pages, 3 eps figs (high quality images available from Mark Bowick
A multi-color fast-switching microfluidic droplet dye laser
We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz -— the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry
Skating on a Film of Air: Drops Impacting on a Surface
Drops impacting on a surface are ubiquitous in our everyday experience. This
impact is understood within a commonly accepted hydrodynamic picture: it is
initiated by a rapid shock and a subsequent ejection of a sheet leading to
beautiful splashing patterns. However, this picture ignores the essential role
of the air that is trapped between the impacting drop and the surface. Here we
describe a new imaging modality that is sensitive to the behavior right at the
surface. We show that a very thin film of air, only a few tens of nanometers
thick, remains trapped between the falling drop and the surface as the drop
spreads. The thin film of air serves to lubricate the drop enabling the fluid
to skate on the air film laterally outward at surprisingly high velocities,
consistent with theoretical predictions. Eventually this thin film of air must
break down as the fluid wets the surface. We suggest that this occurs in a
spinodal-like fashion, and causes a very rapid spreading of a wetting front
outwards; simultaneously the wetting fluid spreads inward much more slowly,
trapping a bubble of air within the drop. Our results show that the dynamics of
impacting drops are much more complex than previously thought and exhibit a
rich array of unexpected phenomena that require rethinking classical paradigms.Comment: 4 pages, 4 figure
Activity driven fluctuations in living cells
We propose a model for the dynamics of a probe embedded in a living cell,
where both thermal fluctuations and nonequilibrium activity coexist. The model
is based on a confining harmonic potential describing the elastic cytoskeletal
matrix, which undergoes random active hops as a result of the nonequilibrium
rearrangements within the cell. We describe the probe's statistics and we bring
forth quantities affected by the nonequilibrium activity. We find an excellent
agreement between the predictions of our model and experimental results for
tracers inside living cells. Finally, we exploit our model to arrive at
quantitative predictions for the parameters characterizing nonequilibrium
activity, such as the typical time scale of the activity and the amplitude of
the active fluctuations.Comment: 6 pages, 4 figure
- …
