4,856 research outputs found

    The geology of the Venera/Vega landing sites

    Get PDF
    We have performed a photogeological analysis of the Venera Vega landing sites using Magellan radar images. These seven sites are the only places on Venus where geochemistry measurements were taken. In this study, the updated coordinates of the landing sites are used and the landing circle has a radius with an admissible error of about 150 km

    Largest impact craters on Venus

    Get PDF
    High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed

    Triple junction at the triple point resolved on the individual particle level

    Full text link
    At the triple point of a repulsive screened Coulomb system, a face-centered-cubic (fcc) crystal, a body-centered-cubic (bcc) crystal and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young's equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point

    Microwave Dielectric Heating of Drops in Microfluidic Devices

    Get PDF
    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique.Comment: 6 pages, 4 figure

    Study of effects of fuel properties in turbine-powered business aircraft

    Get PDF
    Increased interest in research and technology concerning aviation turbine fuels and their properties was prompted by recent changes in the supply and demand situation of these fuels. The most obvious change is the rapid increase in fuel price. For commercial airplanes, fuel costs now approach 50 percent of the direct operating costs. In addition, there were occasional local supply disruptions and gradual shifts in delivered values of certain fuel properties. Dwindling petroleum reserves and the politically sensitive nature of the major world suppliers make the continuation of these trends likely. A summary of the principal findings, and conclusions are presented. Much of the material, especially the tables and graphs, is considered in greater detail later. The economic analysis and examination of operational considerations are described. Because some of the assumptions on which the economic analysis is founded are not easily verified, the sensitivity of the analysis to alternates for these assumptions is examined. The data base on which the analyses are founded is defined in a set of appendices

    Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts

    Full text link
    Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a novel limit cycle, which we interpret physically. To test the robustness of our mean field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.Comment: 20 pages, 16 figures, 4 table

    Grain Boundary Scars and Spherical Crystallography

    Full text link
    We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries, or scars, not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. The observed slope is expected to be universal, independent of the microscopic potential.Comment: 4 pages, 3 eps figs (high quality images available from Mark Bowick

    A multi-color fast-switching microfluidic droplet dye laser

    Get PDF
    We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz -— the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry

    Skating on a Film of Air: Drops Impacting on a Surface

    Full text link
    Drops impacting on a surface are ubiquitous in our everyday experience. This impact is understood within a commonly accepted hydrodynamic picture: it is initiated by a rapid shock and a subsequent ejection of a sheet leading to beautiful splashing patterns. However, this picture ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air must break down as the fluid wets the surface. We suggest that this occurs in a spinodal-like fashion, and causes a very rapid spreading of a wetting front outwards; simultaneously the wetting fluid spreads inward much more slowly, trapping a bubble of air within the drop. Our results show that the dynamics of impacting drops are much more complex than previously thought and exhibit a rich array of unexpected phenomena that require rethinking classical paradigms.Comment: 4 pages, 4 figure

    Activity driven fluctuations in living cells

    Full text link
    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.Comment: 6 pages, 4 figure
    corecore