5,949 research outputs found

    Power balancing and dc fault ride through in DC grids with dc hubs and wind farms

    Get PDF
    Acknowledgment This project was funded by European Research Council under the Ideas program in FP7; grant no 259328, 2010.Peer reviewedPostprin

    Bayesian Approach for Linear Optics Correction

    Full text link
    With a Bayesian approach, the linear optics correction algorithm for storage rings is revisited. Starting from the Bayes' theorem, a complete linear optics model is simplified as "likelihood functions" and "prior probability distributions". Under some assumptions, the least square algorithm and then the Jacobian matrix approach can be re-derived. The coherence of the correction algorithm is ensured through specifying a self-consistent regularization coefficient to prevent overfitting. Optimal weights for different correction objectives are obtained based on their measurement noise level. A new technique has been developed to resolve degenerated quadrupole errors when observed at a few select BPMs. A necessary condition of being distinguishable is that their optics response vectors seen at these specific BPMs should be near-orthogonal.Comment: 6 pages, 6 figure

    A Note on the DQ Analysis of Anisotropic Plates

    Full text link
    Recently, Bert, Wang and Striz [1, 2] applied the differential quadrature (DQ) and harmonic differential quadrature (HDQ) methods to analyze static and dynamic behaviors of anisotropic plates. Their studies showed that the methods were conceptually simple and computationally efficient in comparison to other numerical techniques. Based on some recent work by the present author [3, 4], the purpose of this note is to further simplify the formulation effort and improve computing efficiency in applying the DQ and HDQ methods for these cases
    corecore