2,733 research outputs found

    Amphibian skin defences show variation in ability to inhibit growth of Batrachochytrium dendrobatidis isolates from the Global Panzootic Lineage

    Get PDF
    The fungal pathogen Batrachochytrium dendrobatidis has caused declines and extinctions in hundreds of amphibian species across the world. Virulence varies among and within lineages; the Global Panzootic Lineage (GPL) is the most pathogenic, although there is also variation in lethality between GPL isolates. Amphibians have a number of defences against pathogens, and skin products including the microbiota and host peptides have been shown to have considerable influence over disease progression. Here we show the collective skin products (the mucosome) of two amphibian species show significant variation in their ability to inhibit different globally- distributed isolates of GPL. This may in part explain the variation in disease susceptibility of hosts to different strains of Batrachochytrium dendrobatidis. More work is required to identify particular traits associated with mucosomes that confer broad- spectrum inhibition across GPL in order to facilitate the development of prophylaxis and/or treatments for chytridiomycosis in situ

    3-dimensional Rules for Finite-Temperature Loops

    Get PDF
    We present simple diagrammatic rules to write down Euclidean n-point functions at finite temperature directly in terms of 3-dimensional momentum integrals, without ever performing a single Matsubara sum. The rules can be understood as describing the interaction of the external particles with those of the thermal bath.Comment: 12 pages, 4 figures, to appear in Physics Letters

    Gauge Independence of Limiting Cases of One-Loop Electron Dispersion Relation in High-Temperature QED

    Get PDF
    Assuming high temperature and taking subleading temperature dependence into account, gauge dependence of one-loop electron dispersion relation is investigated in massless QED at zero chemical potential. The analysis is carried out using a general linear covariant gauge. The equation governing the gauge dependence of the dispersion relation is obtained and used to prove that the dispersion relation is gauge independent in the limiting case of momenta much larger than eTeT. It is also shown that the effective mass is not influenced by the leading temperature dependence of the gauge dependent part of the effective self-energy. As a result the effective mass, which is of order eTeT, does not receive a correction of order e2Te^2T from one loop, independent of the gauge parameter.Comment: Revised and enlarged version, 14 pages, Revte

    Fermionic dispersion relations at finite temperature and non-vanishing chemical potentials in the minimal standard model

    Get PDF
    We calculate the fermionic dispersion relations in the minimal standard model at finite temperature in presence of non-vanishing chemical potentials due to the CP-asymmetric fermionic background. The dispersion relations are calculated for a vacuum expectation value of the Higgs field equal to zero (unbroken electroweak symmetry). The calculation is performed in the real time formalism of the thermal field theory at one-loop order in a general ξ\xi gauge. The fermionic self-energy is calculated at leading order in temperature and chemical potential and this fact permits us to obtain gauge invariant analytical expressions for the dispersion relations.Comment: LaTeX File, 18 pages, 1 Postscript figur

    Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors

    Get PDF
    Background: In this study we determined if treatment combining radiation therapy (RT) with intracerebral (i.c.) administration of carboplatin to F98 glioma bearing rats could improve survival over that previously reported by us with a 15 Gy dose (5 Gy × 3) of 6 MV photons.Methods: First, in order to reduce tumor interstitial pressure, a biodistribution study was carried out to determine if pretreatment with dexamethasone alone or in combination with mannitol and furosemide (DMF) would increase carboplatin uptake following convection enhanced delivery (CED). Next, therapy studies were carried out in rats that had received carboplatin either by CED over 30 min (20 μg) or by Alzet pumps over 7 d (84 μg), followed by RT using a LINAC to deliver either 20 Gy (5 Gy × 4) or 15 Gy (7.5 Gy × 2) dose at 6 or 24 hrs after drug administration. Finally, a study was carried out to determine if efficacy could be improved by decreasing the time interval between drug administration and RT.Results: Tumor carboplatin values for D and DMF-treated rats were 9.4 ±4.4 and 12.4 ±3.2 μg/g, respectively, which were not significantly different (P = 0.14). The best survival data were obtained by combining pump delivery with 5 Gy × 4 of X-irradiation with a mean survival time (MST) of 107.7 d and a 43% cure rate vs. 83.6 d with CED vs. 30-35 d for RT alone and 24.6 d for untreated controls. Treatment-related mortality was observed when RT was initiated 6 h after CED of carboplatin and RT was started 7 d after tumor implantation. Dividing carboplatin into two 10 μg doses and RT into two 7.5 Gy fractions, administered 24 hrs later, yielded survival data (MST 82.1 d with a 25% cure rate) equivalent to that previously reported with 5 Gy × 3 and 20 μg of carboplatin.Conclusions: Although the best survival data were obtained by pump delivery, CED was highly effective in combination with 20 Gy, or as previously reported, 15 Gy, and the latter would be preferable since it would produce less late tissue effects.peer-reviewe

    Thermal Pions ns Isospin Chemical Potential Effects

    Full text link
    The density corrections, in terms of the isospin chemical potential μI\mu_I, to the mass of the pions are investigated in the framework of the SU(2) low energy effective chiral invariant lagrangian. As a function of temperature and μI=0\mu_I =0, the mass remains quite stable, starting to grow for very high values of TT, confirming previous results. However, the dependence for a non-vanishing chemical potential turns out to be much more dramatic. In particular, there are interesting corrections to the mass when both effects (temperature and chemical potential) are simultaneously present. At zero temperature the π±\pi ^{\pm} should condensate when μI=mπ\mu_{I} = \mp m_{\pi}. This is not longer valid anymore at finite TT. The mass of the π0\pi_0 acquires also a non trivial dependence on μI\mu_I at finite TT.Comment: 5 pages, 2 figures. To appear in the proceedings of the International High-Energy Physics Conference on Quantum Chromodynamics QCD02, Montpellier, 2-9 July (2002

    Collective fermionic excitations in systems with a large chemical potential

    Get PDF
    We study fermionic excitations in a cold ultrarelativistic plasma. We construct explicitly the quantum states associated with the two branches which develop in the excitation spectrum as the chemical potential is raised. The collective nature of the long wavelength excitations is clearly exhibited. Email contact: [email protected]: Saclay-T93/018 Email: [email protected]

    Light-front Schwinger Model at Finite Temperature

    Full text link
    We study the light-front Schwinger model at finite temperature following the recent proposal in \cite{alves}. We show that the calculations are carried out efficiently by working with the full propagator for the fermion, which also avoids subtleties that arise with light-front regularizations. We demonstrate this with the calculation of the zero temperature anomaly. We show that temperature dependent corrections to the anomaly vanish, consistent with the results from the calculations in the conventional quantization. The gauge self-energy is seen to have the expected non-analytic behavior at finite temperature, but does not quite coincide with the conventional results. However, the two structures are exactly the same on-shell. We show that temperature does not modify the bound state equations and that the fermion condensate has the same behavior at finite temperature as that obtained in the conventional quantization.Comment: 10 pages, one figure, version to be published in Phys. Rev.

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Get PDF
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ωT\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ωαT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    Thermal Dileptons from a Nonperturbative Quark-Gluon Phase

    Full text link
    Assuming that gluon condensates are important even above the deconfining phase transition, we develop a model for the dilepton yield from a quark gluon plasma. Using a simple fire ball description of a heavy ion collision, and various estimates of the strengths of the gluon condensates, we compare our predicted dilepton yields with those observed in the CERES and HELIOS experiments at CERN. The simple model gives an adequate description of the data, and in particular it explains the observed considerable enhancement of the yield in the low mass region.Comment: 7 pages, 6 figures, reference adde
    corecore