194 research outputs found

    Oral health research priorities on the Cochrane Library (Poster ID P2-023)

    Get PDF
    Background: It was necessary for the Cochrane Oral Health Group (Cochrane OHG) to identify the most clinically important titles to maintain on the Cochrane Library, due to limited capacity and funding restraints. This will enable us also to fulfill the first two goals of the Cochrane Strategy to 2020 by producing high quality, useful, accessible evidence. Objectives: To identify a core portfolio of priority reviews for maintenance by Cochrane OHG. Methods: We categorised 234 registered titles into eight defined areas of dentistry: periodontology, operative (including endodontics) and prosthodontics, paediatric dentistry, dental public health, oral and maxillofacial surgery, oral medicine, orthodontics, cleft lip and/or palate. Active authors of Cochrane OHG’s reviews in each area were invited to rank their ‘top 10’ titles of clinical importance for that area. A brief online public consultation survey captured the oral concerns of 81 people (from 15 countries, across five continents) to inform the decision-making process. Authors’ initial pooled rankings and results of the public survey were presented to an international clinical expert panel for each area of dentistry (eight panels, totalling 133 members) for discussion. This was possible due to the financial support of the Global Alliance, who also provided networks for accessing clinical experts. Results: The process successfully identified a core portfolio of 96 reviews to be considered a priority for Cochrane OHG, 15 of which are new titles for registration. (See Figure 1). The Cochrane OHG is rationalising and expanding the scope of some reviews where appropriate. Conclusions: The prioritisation process successfully accomplished its objective, and the resulting core portfolio will be subject to revision periodically to ensure we produce easily accessed, high quality, important reviews. The next exercise is scheduled for 2017, when Cochrane OHG will use the same methods as the previous process, but will ensure a broader public survey period

    Evidence for acquisition of virulence effectors in pathogenic chytrids

    Get PDF
    Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd). This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN) proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis

    The Deadly Chytrid Fungus: A Story of an Emerging Pathogen

    Get PDF
    [Extract] Emerging infectious diseases present a great challenge for the health of both humans and wildlife. The increasing prevalence of drug-resistant fungal pathogens in humans [1] and recent outbreaks of novel fungal pathogens in wildlife populations [2] underscore the need to better understand the origins and mechanisms of fungal pathogenicity. One of the most dramatic examples of fungal impacts on vertebrate populations is the effect of the amphibian disease chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd).\ud Amphibians around the world are experiencing unprecedented population losses and local extinctions [3]. While there are multiple causes of amphibian declines, many catastrophic die-offs are attributed to Bd [4],[5]. The chytrid pathogen has been documented in hundreds of amphibian species, and reports of Bd's impact on additional species and in additional geographic regions are accumulating at an alarming rate (e.g., see http://www.spatialepidemiology.net/bd). Bd is a microbial, aquatic fungus with distinct life stages. The motile stage, called a zoospore, swims using a flagellum and initiates the colonization of frog skin. Within the host epidermal cells, a zoospore forms a spherical thallus, which matures and produces new zoospores by dividing asexually, renewing the cycle of infection when zoospores are released to the skin surface (Figure 1). Bd is considered an emerging pathogen, discovered and described only a decade ago [6],[7]. Despite intensive ecological study of Bd over the last decade, a number of unanswered questions remain. Here we summarize what has been recently learned about this lethal pathogen

    A Reservoir Species for the Emerging Amphibian Pathogen Batrachochytrium dendrobatidis Thrives in a Landscape Decimated by Disease

    Get PDF
    Chytridiomycosis, a disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is driving amphibian declines and extinctions in protected areas globally. The introduction of invasive reservoir species has been implicated in the spread of Bd but does not explain the appearance of the pathogen in remote protected areas. In the high elevation (>1500 m) Sierra Nevada of California, the native Pacific chorus frog, Pseudacris regilla, appears unaffected by chytridiomycosis while sympatric species experience catastrophic declines. We investigated whether P. regilla is a reservoir of Bd by comparing habitat occupancy before and after a major Bd outbreak and measuring infection in P. regilla in the field, monitoring susceptibility of P. regilla to Bd in the laboratory, examining tissues with histology to determine patterns of infection, and using an innovative soak technique to determine individual output of Bd zoospores in water. Pseudacris regilla persists at 100% of sites where a sympatric species has been extirpated from 72% in synchrony with a wave of Bd. In the laboratory, P. regilla carried loads of Bd as much as an order of magnitude higher than loads found lethal to sympatric species. Histology shows heavy Bd infection in patchy areas next to normal skin, a possible mechanism for tolerance. The soak technique was 77.8% effective at detecting Bd in water and showed an average output of 68 zoospores per minute per individual. The results of this study suggest P. regilla should act as a Bd reservoir and provide evidence of a tolerance mechanism in a reservoir species

    Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    Get PDF
    Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity.We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions.The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease

    Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    Get PDF
    Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease

    Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1

    Get PDF
    Increased expression of BAFF (B cell-activating factor belonging to the TNF family) and its receptors has been identified in numerous B-cell malignancies. A soluble human BAFF mutant (mBAFF), binding to BAFF receptors but failing to activate B-lymphocyte proliferation, may function as a competitive inhibitor of BAFF and may serve as a novel ligand for targeted therapy of BAFF receptor-positive malignancies. Pin2/TRF1-interacting protein X1 (PinX1), a nucleolar protein, potently inhibits telomerase activity and affects tumorigenicity. In this study, we generated novel recombinant proteins containing mBAFF, a polyarginine tract 9R and PinX1 (or its C/N terminal), to target lymphoma cells. The fusion proteins PinX1/C–G4S–9R–G4S–mBAFF and PinX1/C–9R–mBAFF specifically bind and internalize into BAFF receptor-positive cells, and subsequently induce growth inhibition and apoptosis. The selective cytotoxicity of the fusion proteins is a BAFF receptor-mediated process and depends on mBAFF, PinX1/C and 9R. Moreover, the fusion proteins specifically kill BAFF receptor-expressing Burkitt's lymphoma (BL) cells by inhibiting telomerase activity and the consequent shortening of telomeres. Therapeutic experiments using PinX1C–G4S–9R–G4S–mBAFF in severe combined immunodeficient (SCID) mice implanted with Raji cells showed significantly prolonged survival times, indicating the in vivo antitumor activity of the fusion protein. These results suggest the potential of PinX1/C–G4S–9R–G4S–mBAFF in targeted therapy of BL

    Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy

    Get PDF
    BACKGROUND: Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation. METHODS AND PRINCIPAL FINDINGS: Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth. CONCLUSIONS: These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy
    corecore