471 research outputs found
A massive, quiescent galaxy at redshift of z=3.717
In the early Universe finding massive galaxies that have stopped forming
stars present an observational challenge as their rest-frame ultraviolet
emission is negligible and they can only be reliably identified by extremely
deep near-infrared surveys. These have revealed the presence of massive,
quiescent early-type galaxies appearing in the universe as early as z2,
an epoch 3 Gyr after the Big Bang. Their age and formation processes have now
been explained by an improved generation of galaxy formation models where they
form rapidly at z3-4, consistent with the typical masses and ages derived
from their observations. Deeper surveys have now reported evidence for
populations of massive, quiescent galaxies at even higher redshifts and earlier
times, however the evidence for their existence, and redshift, has relied
entirely on coarsely sampled photometry. These early massive, quiescent
galaxies are not predicted by the latest generation of theoretical models.
Here, we report the spectroscopic confirmation of one of these galaxies at
redshift z=3.717 with a stellar mass of 1.710 M whose
absorption line spectrum shows no current star-formation and which has a
derived age of nearly half the age of the Universe at this redshift. The
observations demonstrates that the galaxy must have quickly formed the majority
of its stars within the first billion years of cosmic history in an extreme and
short starburst. This ancestral event is similar to those starting to be found
by sub-mm wavelength surveys pointing to a possible connection between these
two populations. Early formation of such massive systems is likely to require
significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely
to the published version. Uploaded 6 months after publication in accordance
with Nature polic
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
A search for high-energy neutrinos interacting within the IceCube detector
between 2010 and 2012 provided the first evidence for a high-energy neutrino
flux of extraterrestrial origin. Results from an analysis using the same
methods with a third year (2012-2013) of data from the complete IceCube
detector are consistent with the previously reported astrophysical flux in the
100 TeV - PeV range at the level of per flavor and reject a
purely atmospheric explanation for the combined 3-year data at .
The data are consistent with expectations for equal fluxes of all three
neutrino flavors and with isotropic arrival directions, suggesting either
numerous or spatially extended sources. The three-year dataset, with a livetime
of 988 days, contains a total of 37 neutrino candidate events with deposited
energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy
neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event
displays, and other data tables are included after the final page of the
article. Changed from the initial submission to reflect referee comments,
expanding the section on atmospheric backgrounds, and fixes offsets of up to
0.9 seconds in reported event times. Address correspondence to: J. Feintzeig,
C. Kopper, N. Whitehor
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube
We present constraints derived from a search of four years of IceCube data
for a prompt neutrino flux from gamma-ray bursts (GRBs). A single
low-significance neutrino, compatible with the atmospheric neutrino background,
was found in coincidence with one of the 506 observed bursts. Although GRBs
have been proposed as candidate sources for ultra-high energy cosmic rays, our
limits on the neutrino flux disfavor much of the parameter space for the latest
models. We also find that no more than of the recently observed
astrophysical neutrino flux consists of prompt emission from GRBs that are
potentially observable by existing satellites.Comment: 15 pages, 3 figure
Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube
The IceCube Neutrino Observatory was designed primarily to search for
high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A
search for ~TeV neutrinos interacting inside the instrumented
volume has recently provided evidence for an isotropic flux of such neutrinos.
At lower energies, IceCube collects large numbers of neutrinos from the weak
decays of mesons in cosmic-ray air showers. Here we present the results of a
search for neutrino interactions inside IceCube's instrumented volume between
1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy
threshold for neutrinos from the southern sky below 10 TeV for the first time,
far below the threshold of the previous high-energy analysis. Astrophysical
neutrinos remain the dominant component in the southern sky down to 10 TeV.
From these data we derive new constraints on the diffuse astrophysical neutrino
spectrum, , as well as the strongest upper limit yet on
the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times
the benchmark theoretical prediction used in previous IceCube results at 90\%
confidence.Comment: 18 pages, 12 figure
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for nu(mu) + (nu) over bar (mu) of E-2. Phi(E) = 0.25 x 10(-8) GeV cm(-2) s(-1) sr(-1), and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E-2 . Phi(E) = 1.44 x 10(-8) GeV cm(-2) s(-1) sr(-1)
Radio Observations Reveal Unusual Circumstellar Environments for Some Type Ibc Supernova Progenitors
We present extensive radio observations of the nearby Type Ibc supernovae
2004cc, 2004dk, and 2004gq spanning 8-1900 days after explosion. Using a
dynamical model developed for synchrotron emission from a slightly decelerated
shockwave, we estimate the velocity and energy of the fastest ejecta and the
density profile of the circumstellar medium. The shockwaves of all three
supernovae are characterized by non-relativistic velocities of v ~ (0.1-25)c
and associated energies of E ~ (2-10) * 1e47 erg, in line with the expectations
for a typical homologous explosion. Smooth circumstellar density profiles are
indicated by the early radio data and we estimate the progenitor mass loss
rates to be ~ (0.6-13) * 1e-5 M_sun/yr (wind velocity 10^3 km/s). These
estimates approach the saturation limit (~1e-4 M_sun/yr) for line-driven winds
from Wolf-Rayet stars, the favored progenitors of SNe Ibc including those
associated with long-duration GRBs. Intriguingly, at later epochs all three
supernovae show evidence for abrupt radio variability that we attribute to
large density modulations (factor of ~3-6) at circumstellar radii of r ~ (1-50)
* 1e16 cm. If due to variable mass loss, these modulations are associated with
progenitor activity on a timescale of ~ 10-100 years before explosion. We
consider these results in the context of variable mass loss mechanisms
including wind clumping, metallicity-independent continuum-driven ejections,
and binary-induced modulations. It may also be possible that the SN shockwaves
are dynamically interacting with wind termination shocks, however, this
requires the environment to be highly pressurized and/or the progenitor to be
rapidly rotating prior to explosion. The proximity of the density modulations
to the explosion sites may suggest a synchronization between unusual progenitor
mass loss and the SN explosion, reminiscent of Type IIn supernovae. [ABRIDGED]Comment: 23 pages, 8 figures, 5 tables, accepted to Ap
Fast variability from black-hole binaries
Currently available information on fast variability of the X-ray emission
from accreting collapsed objects constitutes a complex phenomenology which is
difficult to interpret. We review the current observational standpoint for
black-hole binaries and survey models that have been proposed to interpret it.
Despite the complex structure of the accretion flow, key observational
diagnostics have been identified which can provide direct access to the
dynamics of matter motions in the close vicinity of black holes and thus to the
some of fundamental properties of curved spacetimes, where strong-field general
relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science
Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI
"The Physics of Accretion onto Black Holes" (Springer Publisher
Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube
A diffuse flux of astrophysical neutrinos above has been
observed at the IceCube Neutrino Observatory. Here we extend this analysis to
probe the astrophysical flux down to and analyze its flavor
composition by classifying events as showers or tracks. Taking advantage of
lower atmospheric backgrounds for shower-like events, we obtain a shower-biased
sample containing 129 showers and 8 tracks collected in three years from 2010
to 2013. We demonstrate consistency with the
flavor ratio at Earth
commonly expected from the averaged oscillations of neutrinos produced by pion
decay in distant astrophysical sources. Limits are placed on non-standard
flavor compositions that cannot be produced by averaged neutrino oscillations
but could arise in exotic physics scenarios. A maximally track-like composition
of is excluded at , and a purely shower-like
composition of is excluded at .Comment: 8 pages, 3 figures. Submitted to PR
Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
We present a measurement of neutrino oscillations via atmospheric muon
neutrino disappearance with three years of data of the completed IceCube
neutrino detector. DeepCore, a region of denser instrumentation, enables the
detection and reconstruction of atmospheric muon neutrinos between 10 GeV and
100 GeV, where a strong disappearance signal is expected. The detector volume
surrounding DeepCore is used as a veto region to suppress the atmospheric muon
background. Neutrino events are selected where the detected Cherenkov photons
of the secondary particles minimally scatter, and the neutrino energy and
arrival direction are reconstructed. Both variables are used to obtain the
neutrino oscillation parameters from the data, with the best fit given by
and
(normal mass hierarchy assumed). The
results are compatible and comparable in precision to those of dedicated
oscillation experiments.Comment: 10 pages, 7 figure
Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
We present a measurement of neutrino oscillations via atmospheric muon
neutrino disappearance with three years of data of the completed IceCube
neutrino detector. DeepCore, a region of denser instrumentation, enables the
detection and reconstruction of atmospheric muon neutrinos between 10 GeV and
100 GeV, where a strong disappearance signal is expected. The detector volume
surrounding DeepCore is used as a veto region to suppress the atmospheric muon
background. Neutrino events are selected where the detected Cherenkov photons
of the secondary particles minimally scatter, and the neutrino energy and
arrival direction are reconstructed. Both variables are used to obtain the
neutrino oscillation parameters from the data, with the best fit given by
and
(normal mass hierarchy assumed). The
results are compatible and comparable in precision to those of dedicated
oscillation experiments.Comment: 10 pages, 7 figure
- …
