314 research outputs found
Relations between M\"obius and coboundary polynomial
It is known that, in general, the coboundary polynomial and the M\"obius
polynomial of a matroid do not determine each other. Less is known about more
specific cases. In this paper, we will try to answer if it is possible that the
M\"obius polynomial of a matroid, together with the M\"obius polynomial of the
dual matroid, define the coboundary polynomial of the matroid. In some cases,
the answer is affirmative, and we will give two constructions to determine the
coboundary polynomial in these cases.Comment: 12 page
HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy
The risk of disease associated with persistent virus infections such as HIV-I, hepatitis B and C, and human T-lymphotropic virus-I (HTLV-I) is strongly determined by the virus load. However, it is not known whether a persistent class I HLA-restricted antiviral cytotoxic T lymphocyte (CTL) response reduces viral load and is therefore beneficial or causes tissue damage and contributes to disease pathogenesis. HTLV-I-associated myelopathy (HAM/TSP) patients have a high virus load compared with asymptomatic HTLV-I carriers. We hypothesized that HLA alleles control HTLV-I provirus load and thus influence susceptibility to HAM/TSP. Here we show that, after infection with HTLV-I, the class I allele HLA-A*02 halves the odds of HAM/TSP (P < 0.0001), preventing 28% of potential cases of HAM/TSP. Furthermore, HLA-A*02+ healthy HTLV-I carriers have a proviral load one-third that (P = 0.014) of HLA-A*02− HTLV-I carriers. An association of HLA-DRB1*0101 with disease susceptibility also was identified, which doubled the odds of HAM/TSP in the absence of the protective effect of HLA-A*02. These data have implications for other persistent virus infections in which virus load is associated with prognosis and imply that an efficient antiviral CTL response can reduce virus load and so prevent disease in persistent virus infections
WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis
Active Galaxies in the UV
In this article we present different aspects of AGN studies demonstrating the
importance of the UV spectral range. Most important diagnostic lines for
studying the general physical conditions as well as the metalicities in the
central broad line region in AGN are emitted in the UV. The UV/FUV continuum in
AGN excites not only the emission lines in the immediate surrounding but it is
responsible for the ionization of the intergalactic medium in the early stages
of the universe. Variability studies of the emission line profiles of AGN in
the UV give us information on the structure and kinematics of the immediate
surrounding of the central supermassive black hole as well as on its mass
itself.Comment: 29 pages, 13 figures, Ap&SS in pres
On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers
We present an efficient quantum algorithm for the exact evaluation of either
the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function
Z for a family of graphs related to irreducible cyclic codes. This problem is
related to the evaluation of the Jones and Tutte polynomials. We consider the
connection between the weight enumerator polynomial from coding theory and Z
and exploit the fact that there exists a quantum algorithm for efficiently
estimating Gauss sums in order to obtain the weight enumerator for a certain
class of linear codes. In this way we demonstrate that for a certain class of
sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon)
graphs, quantum computers provide a polynomial speed up in the difference
between the number of edges and vertices of the graph, and an exponential speed
up in q, over the best classical algorithms known to date
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Measurements of the dependence of the proton and neutron spin structure functions and
he structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005
Inclusive hadron photoproduction from longitudinally polarized protons and deuterons.
We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 1
- …
