136 research outputs found

    A Comparative Analysis of Adversarial Robustness for Quantum and Classical Machine Learning Models

    Full text link
    Quantum machine learning (QML) continues to be an area of tremendous interest from research and industry. While QML models have been shown to be vulnerable to adversarial attacks much in the same manner as classical machine learning models, it is still largely unknown how to compare adversarial attacks on quantum versus classical models. In this paper, we show how to systematically investigate the similarities and differences in adversarial robustness of classical and quantum models using transfer attacks, perturbation patterns and Lipschitz bounds. More specifically, we focus on classification tasks on a handcrafted dataset that allows quantitative analysis for feature attribution. This enables us to get insight, both theoretically and experimentally, on the robustness of classification networks. We start by comparing typical QML model architectures such as amplitude and re-upload encoding circuits with variational parameters to a classical ConvNet architecture. Next, we introduce a classical approximation of QML circuits (originally obtained with Random Fourier Features sampling but adapted in this work to fit a trainable encoding) and evaluate this model, denoted Fourier network, in comparison to other architectures. Our findings show that this Fourier network can be seen as a "middle ground" on the quantum-classical boundary. While adversarial attacks successfully transfer across this boundary in both directions, we also show that regularization helps quantum networks to be more robust, which has direct impact on Lipschitz bounds and transfer attacks.Comment: submitted to IEEE QCE2

    Medical App Treatment of Non-Specific Low Back Pain in the 12-month Cluster-Randomized Controlled Trial Rise-uP: Where Clinical Superiority Meets Cost Savings

    Get PDF
    Janosch A Priebe,1 Linda Kerkemeyer,2 Katharina K Haas,1 Katharina Achtert,2 Leida F Moreno Sanchez,1,3 Paul Stockert,1 Maximilian Spannagl,1 Julia Wendlinger,1 Reinhard Thoma,4 Siegfried Ulrich Jedamzik,3 Jan Reichmann,5 Sebastian Franke,6 Leonie Sundmacher,6 Volker E Amelung,2 Thomas R Toelle1 1Center of Interdisciplinary Pain Medicine, Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany; 2Institute for Applied Health Services Research, Inav GmbH, Berlin, Germany; 3Bayerische TelemedAllianz, Ingolstadt, Baar-Ebenhausen, Germany; 4Pain Clinic, Algesiologikum Pain Center, Munich, Germany; 5StatConsult GmbH Magdeburg, Magdeburg, Germany; 6Department of Health Economics, Faculty of Sports and Health Sciences, Technical University of Munich (TUM), Munich, GermanyCorrespondence: Thomas R Toelle, Center of Interdisciplinary Pain Medicine, Department of Neurology, Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, 81675, Germany, Tel +49-89-4140-4613, Email [email protected]: Non-specific low back pain (NLBP) exerts a profound impact on global health and economics. In the era of Web 3.0, digital therapeutics offer the potential to improve NLBP management. The Rise-uP trial introduces a digitally anchored, general practitioner (GP)-focused back pain management approach with the Kaia back pain app as the key intervention. Here, we present the 12-months evaluation of the Rise-uP trial including clinical and economic outcomes, patient satisfaction and behavioral tracking analysis.Methods: The cluster-randomized controlled study (registration number: DRKS00015048) enrolled 1237 patients, with 930 receiving treatment according to the Rise-uP approach and 307 subjected to standard of care treatment. Assessments of pain, psychological state, functional capacity, and well-being (patient-reported outcome measures; PROMs) were collected at baseline, and at 3-, 6-, and 12-months follow-up intervals. Health insurance partners AOK, DAK, and BARMER provided individual healthcare cost data. An artificial intelligence (AI)-driven behavioral tracking analysis identified distinct app usage clusters that presented all with about the same clinical outcome. Patient satisfaction (patient-reported experience measures; PREMs) was captured at the end of the trial.Results: Intention-to-treat (ITT) analysis demonstrated that the Rise-uP group experienced significantly greater pain reduction at 12 months compared to the control group (IG: − 46% vs CG: − 24%; p < 0.001) with only the Rise-uP group achieving a pain reduction that was clinically meaningful. Improvements in all other PROMs were notably superior in patients of the Rise-uP group. The AI analysis of app usage discerned four usage clusters. Short- to long-term usage, all produced about the same level of pain reduction. Cost-effectiveness analysis indicated a substantial economic benefit for Rise-uP.Conclusion: The Rise-uP approach with a medical multimodal back pain app as the central element of digital treatment demonstrates both, clinical and economic superiority compared to standard of care in the management of NLBP.Keywords: digital medicine, medical apps, non-specific low back pain, multimodal pain therapy, healthcare costs, behavioral tracking analysi

    Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS

    Get PDF
    We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of Gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria

    Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model

    Get PDF
    BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology

    How Listeria monocytogenes organizes its surface for virulence

    Get PDF
    Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work "behind the frontline", either supporting virulence effectors or ensuring the survival of the bacterium within its host.We apologize to authors whose relevant work could not be cited owing to space limitations. Research in the group of Molecular Microbiology is funded by the project "NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions" co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER), the Operational Competitiveness Programme (COMPETE) and FCT (Fundacdo para a Ciencia e Tecnologia), and by projects ERANet Pathogenomics LISTRESS ERA-PTG/0003/2010, PTDC/SAU-MIC/111581/2009FCOMP-FEDER, PTDC/BIA-BCM/100088/2008FCOMP-01-0124-FEDER-008860 and PTDC/BIA-BCM/111215/2009FCOMP-01-0124-FEDER-014178. Filipe Carvalho was supported by FCT doctoral grant SFRH1BD16182512009, and Sandra Sousa by the Ciencia 2008 and FCT-Investigator programs (COMPETE, POPH, and FCT)

    Bewertung der Zuverlässigkeit automatisierter Auswertungen der Wärmeleitfähigkeit mithilfe eines integrierten Datenanalyse-Frameworks

    No full text
    Zuverlässige Abschätzungen des Wärmetransports sind entscheidend für die Auswertung von Tokamak-Experimenten und die Szenario Entwicklung, da ein effektiver Wärmeeinschluss notwendig ist, um einen Nettoenergiegewinn zu erzielen. In magnetisch eingeschlossenen Plasmen dominiert turbulenter Transport die Energieverluste, dessen komplexe Natur sich jedoch nicht analytisch beschreiben lässt. Obwohl es fortgeschrittene numerische Codes für detaillierte Turbulenzmodellierung gibt, sind diese rechenintensiv und eignen sich daher nicht für die Analyse vieler experimenteller Plasmaentladungen. Diese Arbeit verfolgt einen alternativen Ansatz, der ausschließlich experimentelle Daten nutzt, um ein diffuses Transportkoeffizienten-Modell zu speisen, das aus dem Transport code ASTRA adaptiert wurde. Der Wärmetransportwird durch Aufstellen einer Leistungsbilanz für Elektronen und Ionenanalysiert, in der sämtliche relevanten Leistungsquellen und -senken, wie Heizsysteme und Strahlungsverluste, berücksichtigt werden, um die zugehörigen Diffusionskoeffizienten χ zu bestimmen. Konkret werden Implementierung, Validierung und Analyse der Berechnung der Elektronen- und Ionen-Wärmediffusivitäten im bayesschen integrierte daten analyse system (IDA/IDE) am ASDEX Upgrade Tokamak vorgestellt. Ein zentraler Beitrag ist eine robuste Rekonstruktion des Strahlungsleistungsprofils: Anstatt sich auf spärliche Verunreinigungskonzentrationen (W,C) und feste Strahlungsfunktionen zu stützen, wird ein Gaussian-Process-Tomographie (GPT)-Code auf Basis von Bolometerdaten nach Fortran90 portiert und in IDE integriert. Die Implementierung führt eine X-Punkt-sensitive Maskierung ein, die Divertor-Pixel ausschließt, während die Emission des eingeschlossenen Plasmas erhalten bleibt, und führt eine radiale Integration in ρtor mit spline basierter Volumennormierung durch. Das GPT-basierte Prad stimmt mit manuellen Tomographien überein und korrigiert den unphysikalischen Randabfall des Legacy-Modells, wodurch χe im Bereich des Pedestals verbessert wird. Eine Monte-Carlo-Sensitivitätsstudie quantifiziert Unsicherheitshüllen in Abhängigkeit vom Radius: Temperaturgradienten dominieren (Te für χe, Ti für χi), mit den größten relativen Unsicherheiten im Kern und am Rand sowie kleineren, verlässlicheren Werten für 0.2 ≤ ρtor ≤ 0.8. Analysen mit hoher zeitlicher Auflösung zeigen interpretierbare χ-Dynamik während ELMZyklen, sofern die Diagnostik-Kadenz dies zulässt; der Einfluss der zeitlichen Auflösung und der Behandlung von dWdt wird charakterisiert, und Mittelungenüber dasselbe Zeitfenster versöhnen Profile, die mit unterschiedlichen Kadenzen gewonnen wurden. Insgesamt liefert die Arbeit einen validierten, leicht nutzbaren Pfad zu Transportkoeffizienten direkt aus IDE sowie praktische Hinweise zu Verlässlichkeit und Grenzen.Reliable estimates of heat transport are crucial for interpreting to kamak experiments and informing scenario development, as effective heat confinement is necessary to achieve net energy gain. In magnetically confined plasmas, turbulent transport dominates energy losses, but its complex nature cannot be described analytically. While advanced numerical codes exist for detailed turbulence modeling, they are computationally intensive. This thesis adopts an alternative approach by relying exclusively on experimental data to use in a diffusive transport coefficient model adapted from the transport code ASTRA. Heat transport is analyzed by establishing a power balance for electrons and ions, accounting for all relevant power sources and sinks, such as heating systems and radiative losses, to calculate the corresponding diffusion coefficients χ. Specifically, this work implements, validates and analyzes the calculation of the electron and ion heat diffusivities with in the Bayesian integrated data analysis framework (IDA/IDE) at the ASDEX Upgrade to kamak. A central contribution is a robust reconstruction of the radiated-power profile: instead of relying on sparse impurity concentrations (W, C) and fixed radiation functions, a Gaussian-Process Tomography (GPT) code using bolometer data is ported and integrated into IDE (Fortran90). The implementation introduces an X-point-aware masking that excludes divertor pixels while preserving confined-plasma emission and performs radial integration inρtor with spline-based volume normalization. The GPT-based Prad agrees with manual tomographies and corrects the unphysical edge roll-off of the legacy model, thereby improving χe near the pedestal. A Monte Carlo sensitivity study quantifies uncertainty envelopes versus radius: temperature gradients dominate (Te for χe, Ti for χi), with largest relative uncertainties in the core and edge and smaller, more reliable values for 0.2 ≤ ρtor ≤ 0.8. High-time-resolution analyses demonstrate interpretableχ dynamics during ELM cycles when the diagnostic data acquisition rate permits; the impact of temporal resolution and dWdt treatment is characterized and averaging across the same time window reconciles profiles obtained at different cadences. Overall, the work delivers a validated, readily available pathway to transport coefficients directly from IDE, together with practical guidance on reliability and limits

    Faradaic efficiencies of oxynitride based photoanodes

    No full text
    eingereicht von: Veronika WendlingerLiteraturverzeichnis: Seite 73-76Masterarbeit Paris Lodron Universit\ue4t Salzburg 202
    corecore