20,118 research outputs found

    The NSNS High Energy Beam Transport Line

    Get PDF
    In the National Spallation Neutron Source (NSNS) design, a 180 meter long transport line connects the 1 GeV linac to an accumulator ring. The linac beam has a current of 28 mA, pulse length of 1 ms, and 60 Hz rep rate. The high energy transport line consists of sixteen 60 degrees FODO cells, and accommodates a 90 degrees achromatic bend, an energy compressor, collimators, part of injection system, and enough diagnostic devices to measure the beam quality before injection. To reduce the uncontrolled beam losses, this line has nine beam halo scrapers and very tight tolerances on both transverse and longitudinal beam dynamics under space charge conditions. The design of this line is presented.Comment: 3 pages, transfer line desig

    Spin-roton excitations in the cuprate superconductors

    Full text link
    We identify a new kind of elementary excitations, spin-rotons, in the doped Mott insulator. They play a central role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as the characteristic energy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.Comment: 10 pages, 9 figure

    Transverse instability of dunes

    Full text link
    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show numerically and with a linear stability analysis that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.Comment: 4 pages, 3 figures; To appear in Physical Review Letter

    Variable redundancy product coders

    Get PDF
    Variable redundancy error detection code

    Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling

    Full text link
    We investigate the effects of the intense terahertz laser field and the spin-orbit coupling on single electron spin in a quantum dot. The laser field and the spin-orbit coupling can strongly affect the electron density of states and can excite a magnetic moment. The direction of the magnetic moment depends on the symmetries of the system, and its amplitude can be tuned by the strength and frequency of the laser field as well as the spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Quasi-bound states and Fano effect in T-shaped graphene nanoribbons

    Full text link
    We study the quasi-bound state and the transport properties in the T-shaped graphene nanoribbon consisting of a metallic armchair-edge ribbon connecting to a zigzag-edge sidearm. We systematically study the condition under which there are quasi-bound states in the system for a wide range of the system size. It is found that when the width of the sidearm is about half of the width of the armchair leads, there is a quasi-bound state trapped at the intersection of the T-shape structure. The quasi-bound states are truly localized in the sidearm but have small continuum components in the armchair leads. The quasi-bound states have strong effect on the transport between the armchair leads through the Fano effect, but do not affect the transport between the armchair lead and the sidearm.Comment: 5 pages, 4 figure

    First principles investigation of transition-metal doped group-IV semiconductors: Rx{_x}Y1x_{1-x} (R=Cr, Mn, Fe; Y=Si, Ge)

    Full text link
    A number of transition-metal (TM) doped group-IV semiconductors, Rx_{x}Y1x_{1-x} (R=Cr, Mn and Fe; Y=Si, Ge), have been studied by the first principles calculations. The obtained results show that antiferromagnetic (AFM) order is energetically more favored than ferromagnetic (FM) order in Cr-doped Ge and Si with xx=0.03125 and 0.0625. In 6.25% Fe-doped Ge, FM interaction dominates in all range of the R-R distances while for Fe-doped Ge at 3.125% and Fe-doped Si at both concentrations of 3.125% and 6.25%, only in a short R-R range can the FM states exist. In the Mn-doped case, the RKKY-like mechanism seems to be suitable for the Ge host matrix, while for the Mn-doped Si, the short-range AFM interaction competes with the long-range FM interaction. The different origin of the magnetic orders in these diluted magnetic semiconductors (DMSs) makes the microscopic mechanism of the ferromagnetism in the DMSs more complex and attractive.Comment: 14 pages, 2 figures, 6 table
    corecore