269 research outputs found

    Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties

    Get PDF
    Hybrid materials of single walled carbon nanotubes (SWCNT) were obtained by their non-covalent functionalization with asymmetrically polyoxyethylene substituted phthalocyanines (MPc-py (M = Cu, Co, 2H)) bearing one pyrene group as a substituent. The attachment of MPc-py molecules onto the SWCNT surface have been confirmed using Raman spectroscopy, SEM, TEM and thermogravimetric analysis. The pyrene substituents were introduced to the phthalocyanine macrocycle in order to improve π–π interaction between the MPc-py and SWCNT. The effect of the central metal on the formation and sensor properties of the MPc-py within the hybrids has been verified. It has been shown that the electrical response of the hybrid films to ammonia vapor in the concentration range of 10–50 ppm changes in the following order CuPc-py > CoPc-py > H2Pc-py, which was found to be in good correlation with the amount of phthalocyanine molecules adsorbed onto the SWCNT walls, as estimated by thermogravimetric analysis (TGA)

    Bromination of double-walled carbon nanotubes

    Get PDF
    Double-walled carbon nanotubes (DWCNTs) synthesized by catalytic chemical vapor deposition (CCVD) have been functionalized by bromine vapor at room temperature. At least two different bromine species were detected in the product using X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis. The primary form is negatively charged Br2 molecules exhibiting an intense resonance at ∼238 cm−1 in the Raman spectrum. The electron transfer from the nanotubes to the adsorbed molecules is detected from C 1s XPS and near-edge X-ray absorption fine structure spectra. The optical absorption spectra reveal that although the metallic nanotubes are more reactive to Br2, the outer semiconducting nanotubes also readily interact with Br2 adsorbates. The secondary bromine form is attributed to covalent C-Br bonding, and its possible sources are discussed in the light of quantum-chemical calculations. Analysis of the XPS, Raman, and optical absorption spectra of the Br-DWCNTs annealed at 100-170 ° C indicates preservation of a part of bromine molecules in samples that affects the electronic and vibration properties of nanotubes

    Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review

    Get PDF
    The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry

    Evaluation of the interactions between multiwalled carbon nanotubes and caco-2 cells

    Get PDF
    The aim of this study was to determine whether multiwalled carbon nanotubes (MWNCT) are taken up by and are toxic to human intestinal enterocytes using the Caco-2 cell model. Caco-2 cells were exposed to 50 ?g/ml MWCNT (oxidized or pristine) for 24 h, and experiments were repeated in the presence of 2.5 mg/L natural organic matter. Cells displayed many of the properties that characterize enterocytes, such as apical microvilli, basolateral basement membrane, and glycogen. The cell monolayers also displayed tight junctions and electrical resistance. Exposure to pristine and oxidized MWCNT, with or without natural organic matter, did not markedly affect viability, which was assessed by measuring activity of released lactate dehydrogenase (LDH) and staining with propidium iodide. Ultrastructural analysis revealed some damage to microvilli colocalized with the MWCNT; however, neither type of MWCNT was taken up by Caco-2 cells. In contrast, pristine and oxidized MWCNT were taken up by the macrophage RAW 264.7 line. Our study suggests that intestinal enterocytes cells do not take up MWCNT. [Authors]]]> Nanotubes, Carbon ; Enterocytes ; Caco-2 Cells ; eng oai:serval.unil.ch:BIB_76EBEB40DBA7 2022-02-19T02:24:17Z openaire documents urnserval <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> https://serval.unil.ch/notice/serval:BIB_76EBEB40DBA7 Anne Lise Ellingsaeter, An-Magritt Jensen, Merete Lie (Eds.): The Social Meaning of Children and Fertility Change in Europe info:doi:10.1007/s10680-014-9312-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10680-014-9312-2 Szalma, Ivett info:eu-repo/semantics/article article 2014-02 European Journal of Population, vol. 30, no. 1, pp. 121-123 info:eu-repo/semantics/altIdentifier/pissn/0168-6577 info:eu-repo/semantics/altIdentifier/pissn/1572-9885 eng https://serval.unil.ch/resource/serval:BIB_76EBEB40DBA7.P001/REF.pdf http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_76EBEB40DBA70 info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_76EBEB40DBA70 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/openAccess Copying allowed only for non-profit organizations https://serval.unil.ch/disclaimer application/pdf oai:serval.unil.ch:BIB_76EC1D50A2F5 2022-02-19T02:24:17Z openaire documents urnserval <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> https://serval.unil.ch/notice/serval:BIB_76EC1D50A2F5 Perspectives in melanoma: meeting report from the Melanoma Bridge (November 29th-1 December 1st, 2018, Naples, Italy). info:doi:10.1186/s12967-019-1979-z info:eu-repo/semantics/altIdentifier/doi/10.1186/s12967-019-1979-z info:eu-repo/semantics/altIdentifier/pmid/31331337 Ascierto, P.A. Agarwala, S.S. Botti, G. Budillon, A. Davies, M.A. Dummer, R. Ernstoff, M. Ferrone, S. Formenti, S. Gajewski, T.F. Garbe, C. Hamid, O. Lo, R.S. Luke, J.J. Michielin, O. Palmieri, G. Zitvogel, L. Marincola, F.M. Masucci, G. Caracò, C. Thurin, M. Puzanov, I. info:eu-repo/semantics/article article 2019-07-22 Journal of translational medicine, vol. 17, no. 1, pp. 234 info:eu-repo/semantics/altIdentifier/eissn/1479-5876 urn:issn:1479-5876 <![CDATA[Diagnosis of melanocytic lesions, correct prognostication of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to a given therapy remain very real challenges in melanoma. Recent studies have shown that immune checkpoint blockade that represents a forefront in cancer therapy, provide responses but they are not universal. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers they have yet to be fully characterized and implemented clinically. For example, advancements in sequencing and the understanding of the tumor microenvironment in melanoma have led to the use of genome sequencing and gene expression for development of multi-marker assays that show association with inflammatory state of the tumor and potential to predict response to immunotherapy. As such, melanoma serves as a model system for understanding cancer immunity and patient response to immunotherapy, either alone or in combination with other treatment modalities. Overall, the aim for the translational and clinical studies is to achieve incremental improvements through the development and identification of optimal treatment regimens, which increasingly involve doublet as well as triplet combinations, as well as through development of biomarkers to improve immune response. These and other topics in the management of melanoma were the focus of discussions at the fourth Melanoma Bridge meeting (November 29th-December 1st, 2018, Naples, Italy), which is summarised in this report
    corecore