2,554 research outputs found

    Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2

    Get PDF
    Over the last years, superconductivity has been discovered in several families of iron-based compounds. Despite intense research, even basic electronic properties of these materials, such as Fermi surfaces, effective electron masses, or orbital characters are still subject to debate. Here, we address an issue that has not been considered before, namely the consequences of dynamical screening of the Coulomb interactions among Fe-d electrons. We demonstrate its importance not only for correlation satellites seen in photoemission spectroscopy, but also for the low-energy electronic structure. From our analysis of the normal phase of BaFe2As2 emerges the picture of a strongly correlated compound with strongly doping- and temperature-dependent properties. In the hole overdoped regime, an incoherent metal is found, while Fermi-liquid behavior is recovered in the undoped compound. At optimal doping, the self-energy exhibits an unusual square-root energy dependence which leads to strong band renormalizations near the Fermi level

    A Suborbital Payload for Soft X-ray Spectroscopy of Extended Sources

    Full text link
    We present a suborbital rocket payload capable of performing soft X-ray spectroscopy on extended sources. The payload can reach resolutions of ~100(lambda/dlambda) over sources as large as 3.25 degrees in diameter in the 17-107 angstrom bandpass. This permits analysis of the overall energy balance of nearby supernova remnants and the detailed nature of the diffuse soft X-ray background. The main components of the instrument are: wire grid collimators, off-plane grating arrays and gaseous electron multiplier detectors. This payload is adaptable to longer duration orbital rockets given its comparatively simple pointing and telemetry requirements and an abundance of potential science targets.Comment: Accepted to Experimental Astronomy, 12 pages plus 1 table and 17 figure

    Phenomenological Consequences of sub-leading Terms in See-Saw Formulas

    Full text link
    Several aspects of next-to-leading (NLO) order corrections to see-saw formulas are discussed and phenomenologically relevant situations are identified. We generalize the formalism to calculate the NLO terms developed for the type I see-saw to variants like the inverse, double or linear see-saw, i.e., to cases in which more than two mass scales are present. In the standard type I case with very heavy fermion singlets the sub-leading terms are negligible. However, effects in the percent regime are possible when sub-matrices of the complete neutral fermion mass matrix obey a moderate hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large terms leading to small neutrino masses, or inverse see-saw scenarios. We furthermore identify situations in which no NLO corrections to certain observables arise, namely for mu-tau symmetry and cases with a vanishing neutrino mass. Finally, we emphasize that the unavoidable unitarity violation in see-saw scenarios with extra fermions can be calculated with the formalism in a straightforward manner.Comment: 22 pages, matches published versio

    Role of geometrical cues in bone marrow-derived mesenchymal stem cell survival, growth and osteogenic differentiation

    Get PDF
    Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Fundamental limits of repeaterless quantum communications

    Get PDF
    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching’, we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD
    corecore