12,164 research outputs found

    Observations Supporting the Role of Magnetoconvection in Energy Supply to the Quiescent Solar Atmosphere

    Get PDF
    Identifying the two physical mechanisms behind the production and sustenance of the quiescent solar corona and solar wind poses two of the outstanding problems in solar physics today. We present analysis of spectroscopic observations from the Solar and Heliospheric Observatory that are consistent with a single physical mechanism being responsible for a significant portion of the heat supplied to the lower solar corona and the initial acceleration of the solar wind; the ubiquitous action of magnetoconvection-driven reprocessing and exchange reconnection of the Sun's magnetic field on the supergranular scale. We deduce that while the net magnetic flux on the scale of a supergranule controls the injection rate of mass and energy into the transition region plasma it is the global magnetic topology of the plasma that dictates whether the released ejecta provides thermal input to the quiet solar corona or becomes a tributary that feeds the solar wind.Comment: 34 pages, 13 figures - In press Astrophysical Journal (Jan 1 2007

    Mott transition in one dimension: Benchmarking dynamical cluster approaches

    Full text link
    The variational cluster approach (VCA) is applied to the one-dimensional Hubbard model at zero temperature using clusters (chains) of up to ten sites with full diagonalization and the Lanczos method as cluster solver. Within the framework of the self-energy-functional theory (SFT), different cluster reference systems with and without bath degrees of freedom, in different topologies and with different sets of variational parameters are considered. Static and one-particle dynamical quantities are calculated for half-filling as a function of U as well as for fixed U as a function of the chemical potential to study the interaction- and filling-dependent metal-insulator (Mott) transition. The recently developed Q-matrix technique is used to compute the SFT grand potential. For benchmarking purposes we compare the VCA results with exact results available from the Bethe ansatz, with essentially exact dynamical DMRG data, with (cellular) dynamical mean-field theory and full diagonalization of isolated Hubbard chains. Several issues are discussed including convergence of the results with cluster size, the ability of cluster approaches to access the critical regime of the Mott transition, efficiency in the optimization of correlated-site vs. bath-site parameters and of multi-dimensional parameter optimization. We also study the role of bath sites for the description of excitation properties and as charge reservoirs for the description of filling dependencies. The VCA turns out to be a computationally cheap method which is competitive with established cluster approaches.Comment: 19 pages, 19 figures, v3 with minor corrections, extended discussio

    Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    Get PDF
    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at snn\sqrt s_{nn}=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy Au+AuAu+Au collisions and for Pb+PbPb+Pb collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, ,isnotawelldefinedvariablebothexperimentallyandtheoretically.Therefore,itisinappropriatetousechargedparticlepseudorapiditydensityperparticipantpairasafunctionof, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.

    Werner states and the two-spinors Heisenberg anti-ferromagnet

    Get PDF
    We ascertain, following ideas of Arnesen, Bose, and Vedral concerning thermal entanglement [Phys. Rev. Lett. {\bf 87} (2001) 017901] and using the statistical tool called {\it entropic non-triviality} [Lamberti, Martin, Plastino, and Rosso, Physica A {\bf 334} (2004) 119], that there is a one to one correspondence between (i) the mixing coefficient xx of a Werner state, on the one hand, and (ii) the temperature TT of the one-dimensional Heisenberg two-spin chain with a magnetic field BB along the zz-axis, on the other one. This is true for each value of BB below a certain critical value BcB_c. The pertinent mapping depends on the particular BB-value one selects within such a range

    Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes

    Get PDF
    Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double-knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor

    Strange Particle Production at RHIC

    Get PDF
    We report STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, and Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu and Au+Au sNN=200\sqrt{s_{NN}} = 200 GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu+Cu collisions compared to Au+Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.Comment: Conference proceedings for Hot Quarks 2008, 5 pages and 4 figure

    Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions

    Full text link
    Competition of crystal field splitting and Hund's rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb correlation, the system firstly transits from a paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott insulator, or a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund's rule coupling. The different AFM Mott insulator, PM metal and orbital insulating phase are none, partially and fully orbital polarized, respectively. For a small JHJ_{H} and a finite crystal field, the orbital insulator is robust. Although the system is nonmagnetic, the phase boundary of the orbital insulator transition obviously shifts to the small UU regime after the magnetic correlations is taken into account. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund's rule coupling tends to destroy it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure

    Bounds of concurrence and their relation with fidelity and frontier states

    Full text link
    The bounds of concurrence in [F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505] and [C. Zhang \textit{et. al.}, Phys. Rev. A 78 (2008) 042308] are proved by using two properties of the fidelity. In two-qubit systems, for a given value of concurrence, the states achieving the maximal upper bound, the minimal lower bound or the maximal difference upper-lower bound are determined analytically

    New determination of structure parameters in strong field tunneling ionization theory of molecules

    Get PDF
    In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wavefunction of the molecular orbital from which the electron is removed. The orbital wavefunctions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory (DFT). We show that the asymptotic wavefunction can be improved with an iteration method and after one iteration accurate asymptotic wavefunctions and structure parameters are determined. With the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals
    corecore