45 research outputs found
Technical tip: high-resolution isolation of nanoparticle–protein corona complexes from physiological fluids
Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP–protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches
Stephen Murray and Andrew Tallon, 2012-. Mapping Gothic France. http://mappinggothic.org
The 'Mapping Gothic' website (http://mappinggothic.org/) was originally conceived by Stephen Murray, Professor of Art and Archaeology at Columbia University, and Andrew Tallon, Assistant Professor of Art at Vassar College, as a space to represent Gothic architecture digitally. Aware of the insufficiencies of a two-dimensional screen for rendering these structures, the site compiles panoramic, gigapan images; exact architectural elevations; timelines; and historical narratives to show these buildings in both time and space. The site derives its guiding Hrinciple from Henri Lefèbvre in seeking connections between what it describes as "the architectural space of individual buildings, geo-political space, and the social space resulting from the interaction (collaboration and conflict) between multiple agents – builders and users." Murray and Tallon hope that in addition to providing digital access to these churches, cathedrals, and abbeys, the manipulable platform will allow users to draw their own connections between these Gothic buildings
Biologischer Lichtsammler (LHCII) für Halbleiternanokristalle (Quantum Dots)
Der light harvesting complex II (LHCII) ist ein pflanzliches Membranprotein, das in seiner trimeren Form über 40 Chlorophylle bindet. In der Pflanze kann er besonders effizient Licht sammeln und die Anregungsenergie anschließend fast verlustfrei über andere chlorophyll-bindende Proteine an die Reaktionszentren weiterleiten. Aufgrund dieser besonderen Eigenschaften war es ein Ziel dieser Arbeit, rekombinanten LHCII mit synthetischen Komponenten zu kombinieren, die zur Ladungstrennung befähigt sind. Zu diesem Zweck wurden unter anderem Halbleiternanokristalle (Quantum Dots, QDs) ausgewählt, die je nach Zusammensetzung sowohl als Energieakzeptoren als auch als Energiedonoren in Frage kamen. Durch Optimierung des Puffers gelang es, die Fluoreszenzquantenausbeute der QDs in wässriger Lösung zu erhöhen und zu stabilisieren, so dass die Grundvoraussetzungen für die
spektroskopische Untersuchung verschiedener LHCII-QD-Hybridkomplexe erfüllt waren.rnUnter Verwendung bereits etablierter Affinitätssequenzen zur Bindung des LHCII an die QDs konnte gezeigt werden, dass die in dieser Arbeit verwendeten Typ-I QDs aus CdSe und ZnS sich kaum als Energie-Donoren für den LHCII eignen. Ein Hauptgrund lag im vergleichsweise kleinen Försterradius R0 von 4,1 nm. Im Gegensatz dazu wurde ein R0 von 6,4 nm für den LHCII als Donor und Typ-II QDs aus CdTe, CdSe und ZnS als Akzeptor errechnet, wodurch in diesem System eine höhere Effizienz des Energietransfers zu erwarten war. Fluoreszenzspektroskopische Untersuchungen von Hybridkomplexen aus LHCII und Typ-II QDs ergaben eine hohe Plausibilität für einen Fluoreszenz Resonanz Energietransfer (FRET) vom Lichtsammler auf die QDs. Weitere QD-Affinitätssequenzen für den LHCII wurden identifiziert und deren Bindekonstanten ermittelt. Versuche mit dem Elektronenakzeptor Methylviologen lieferten gute Hinweise auf eine LHCII-sensibilisierte
Ladungstrennung der Typ-II QDs, auch wenn dies noch anhand alternativer Messmethoden wie z.B. durch transiente Absorptionsspektroskopie bestätigt werden muss. rnEin weiteres Ziel war die Verwendung von LHCII als Lichtsammler in dye-sensitized solar cells (DSSC). Geeignete dotierte TiO2-Platten wurden ermittelt, das Verfahren zur Belegung der Platten optimiert und daher mit wenig Aufwand eine hohe LHCII-Belegungsdichte erzielt. Erste Messungen von Aktionsspektren mit LHCII und einem zur Ladungstrennung fähigen Rylenfarbstoff zeigen eine, wenn auch geringe, LHCII sensibilisierte Ladungstrennung. rnDie Verwendung von Lanthanide-Binding-Tags (LBTs) ist ein potentielles Verfahren zur in vivo-Markierung von Proteinen mit Lanthanoiden wie Europium und Terbium. Diese Metalle besitzen eine überdurchschnittlich lange Lumineszenzlebensdauer, so dass sie leicht von anderen fluoreszierenden Molekülen unterschieden werden können. Im Rahmen der vorliegenden Arbeit gelang es, eine LBT in rekombinanten LHCII einzubauen und
einen Lumineszenz Resonanz Energietransfer (LRET) vom Europium auf den LHCII nachzuweisen.rnThe light harvesting complex II (LHCII) is a membrane protein and consists of more than 40 chlorophylls in its trimeric version. In plants it performs efficient light harvesting and transfers the excitation energy nearly quantitatively via other pigment-binding proteins to the reaction center. Due to these LHCII properties it was of interest to combine recombinant LHCII with synthetic compounds that are capable of charge separation. To this end semiconductor nanocrystals, so-called Quantum dots (QDs), where chosen as energy acceptors. Depending on their composition, QDs can also serve as energy donors. By optimizing the buffer system, the QDs fluorescence quantum yield in
aqueous solution has been enhanced and stabilized, fulfilling the prerequisites for spectroscopic investigations of different LHCII-QD hybrid complexes.rnBy using established affinity tags to bind LHCII to QDs it was shown that type-I nanocrystals from CdSe and ZnS were no efficient energy donors for LHCII, presumably due to the small Förster radius (R0) of 4.1 nm. By contrast, a larger R0 of 6.4 nm was estimated for hybrid complexes of LHCII as donors and type-II QDs (CdTe, CdSe, ZnS), thus a higher efficiency of energy transfer was expected. Complexes of LHCII and type-II QDs exhibited fluorescence properties that were indicative of Foerster-type energy transfer from LHCII to QD. Additional QD-affinity tags have been established for the LHCII and their binding constants were estimated. Experiments with the electron acceptor methyl viologen indicated an LHCII sensitized charge separation in QDs. This preliminary result still needs to be confirmed, for example transient absorption spectroscopy.rnAnother
objective was to integrate LHCII-hybrid complexes into dye-sensitized solar cells (DSSCs). Suitably doted TiO2 plates were loaded by an optimized procedure, enhancing the LHCII density on the plates. Preliminary recordings of action spectra with LHCII and a rylen dye as a sensitizer showed a small but significant LHCII-sensitized charge separation. rnThe use of lanthanide binding tags (LBTs) is a possibility for in vivo labeling of proteins with lanthanides like terbium and europium. These metals have an extraordinary long luminescence lifetime making them easily distinguishable from other fluorescent molecules. In this work an LBT was introduced into recombinant LHCII and luminescence resonance energy transfer was shown to take place from europium to LHCII.r
Biologischer Lichtsammler (LHCII) für Halbleiternanokristalle (Quantum Dots)
Der light harvesting complex II (LHCII) ist ein pflanzliches Membranprotein, das in seiner trimeren Form über 40 Chlorophylle bindet. In der Pflanze kann er besonders effizient Licht sammeln und die Anregungsenergie anschließend fast verlustfrei über andere chlorophyll-bindende Proteine an die Reaktionszentren weiterleiten. Aufgrund dieser besonderen Eigenschaften war es ein Ziel dieser Arbeit, rekombinanten LHCII mit synthetischen Komponenten zu kombinieren, die zur Ladungstrennung befähigt sind. Zu diesem Zweck wurden unter anderem Halbleiternanokristalle (Quantum Dots, QDs) ausgewählt, die je nach Zusammensetzung sowohl als Energieakzeptoren als auch als Energiedonoren in Frage kamen. Durch Optimierung des Puffers gelang es, die Fluoreszenzquantenausbeute der QDs in wässriger Lösung zu erhöhen und zu stabilisieren, so dass die Grundvoraussetzungen für die
spektroskopische Untersuchung verschiedener LHCII-QD-Hybridkomplexe erfüllt waren.rnUnter Verwendung bereits etablierter Affinitätssequenzen zur Bindung des LHCII an die QDs konnte gezeigt werden, dass die in dieser Arbeit verwendeten Typ-I QDs aus CdSe und ZnS sich kaum als Energie-Donoren für den LHCII eignen. Ein Hauptgrund lag im vergleichsweise kleinen Försterradius R0 von 4,1 nm. Im Gegensatz dazu wurde ein R0 von 6,4 nm für den LHCII als Donor und Typ-II QDs aus CdTe, CdSe und ZnS als Akzeptor errechnet, wodurch in diesem System eine höhere Effizienz des Energietransfers zu erwarten war. Fluoreszenzspektroskopische Untersuchungen von Hybridkomplexen aus LHCII und Typ-II QDs ergaben eine hohe Plausibilität für einen Fluoreszenz Resonanz Energietransfer (FRET) vom Lichtsammler auf die QDs. Weitere QD-Affinitätssequenzen für den LHCII wurden identifiziert und deren Bindekonstanten ermittelt. Versuche mit dem Elektronenakzeptor Methylviologen lieferten gute Hinweise auf eine LHCII-sensibilisierte
Ladungstrennung der Typ-II QDs, auch wenn dies noch anhand alternativer Messmethoden wie z.B. durch transiente Absorptionsspektroskopie bestätigt werden muss. rnEin weiteres Ziel war die Verwendung von LHCII als Lichtsammler in dye-sensitized solar cells (DSSC). Geeignete dotierte TiO2-Platten wurden ermittelt, das Verfahren zur Belegung der Platten optimiert und daher mit wenig Aufwand eine hohe LHCII-Belegungsdichte erzielt. Erste Messungen von Aktionsspektren mit LHCII und einem zur Ladungstrennung fähigen Rylenfarbstoff zeigen eine, wenn auch geringe, LHCII sensibilisierte Ladungstrennung. rnDie Verwendung von Lanthanide-Binding-Tags (LBTs) ist ein potentielles Verfahren zur in vivo-Markierung von Proteinen mit Lanthanoiden wie Europium und Terbium. Diese Metalle besitzen eine überdurchschnittlich lange Lumineszenzlebensdauer, so dass sie leicht von anderen fluoreszierenden Molekülen unterschieden werden können. Im Rahmen der vorliegenden Arbeit gelang es, eine LBT in rekombinanten LHCII einzubauen und
einen Lumineszenz Resonanz Energietransfer (LRET) vom Europium auf den LHCII nachzuweisen.rnThe light harvesting complex II (LHCII) is a membrane protein and consists of more than 40 chlorophylls in its trimeric version. In plants it performs efficient light harvesting and transfers the excitation energy nearly quantitatively via other pigment-binding proteins to the reaction center. Due to these LHCII properties it was of interest to combine recombinant LHCII with synthetic compounds that are capable of charge separation. To this end semiconductor nanocrystals, so-called Quantum dots (QDs), where chosen as energy acceptors. Depending on their composition, QDs can also serve as energy donors. By optimizing the buffer system, the QDs fluorescence quantum yield in
aqueous solution has been enhanced and stabilized, fulfilling the prerequisites for spectroscopic investigations of different LHCII-QD hybrid complexes.rnBy using established affinity tags to bind LHCII to QDs it was shown that type-I nanocrystals from CdSe and ZnS were no efficient energy donors for LHCII, presumably due to the small Förster radius (R0) of 4.1 nm. By contrast, a larger R0 of 6.4 nm was estimated for hybrid complexes of LHCII as donors and type-II QDs (CdTe, CdSe, ZnS), thus a higher efficiency of energy transfer was expected. Complexes of LHCII and type-II QDs exhibited fluorescence properties that were indicative of Foerster-type energy transfer from LHCII to QD. Additional QD-affinity tags have been established for the LHCII and their binding constants were estimated. Experiments with the electron acceptor methyl viologen indicated an LHCII sensitized charge separation in QDs. This preliminary result still needs to be confirmed, for example transient absorption spectroscopy.rnAnother
objective was to integrate LHCII-hybrid complexes into dye-sensitized solar cells (DSSCs). Suitably doted TiO2 plates were loaded by an optimized procedure, enhancing the LHCII density on the plates. Preliminary recordings of action spectra with LHCII and a rylen dye as a sensitizer showed a small but significant LHCII-sensitized charge separation. rnThe use of lanthanide binding tags (LBTs) is a possibility for in vivo labeling of proteins with lanthanides like terbium and europium. These metals have an extraordinary long luminescence lifetime making them easily distinguishable from other fluorescent molecules. In this work an LBT was introduced into recombinant LHCII and luminescence resonance energy transfer was shown to take place from europium to LHCII.r
Visions Across the Gates: Materiality, Symbolism, and Communication in the Historiated Wooden Doors of Medieval European Churches
Wooden doors carved with programs of Christ’s Infancy and Passion survive from the powerful convent at St. Maria im Kapitol in Cologne, Germany; the pilgrimage cathedral at Le Puy-en-Velay in southern France; the cathedral built in Diocletian’s repurposed mausoleum, in Split, Croatia; and the Benedictine monastery of St. Maria im Cellis in Carsoli, Italy. This diverse group of doors owes its cohesion to a shared model: the historiated wooden doors that adorned the earliest public churches, now exemplified by the sole surviving example at the Basilica of Santa Sabina in Rome. A study of these four sites reveals how patrons adapted the shared, highly-recognizable program and leveraged the communicative power of the door to address the very different needs and circumstances of their specific communities. Examining the doors as a group and through the lens of their shared wooden medium reveals how the doors recalled not only the first church doors of early Christian Rome but tapped into a lineage of biblical doors tracing back to the Temple of Solomon
A symptomatic cystic axillary mass in a post-partum female
AbstractHemangiomas are rarely found in the axilla, with the most commonly identified axillary mass being lymphadenopathy. We report a unique case report of a post-partum female with an axillary mass that became larger and symptomatic while breastfeeding. On imaging, the mass was found to be complex and cystic, and aspiration was attempted several times. With a rapid return of swelling and worsening symptoms, there was concern for bleeding into the cystic cavity. Ultimately, the &gt;10 cm mass had to be formally excised in the operating room, yielding definitive relief of symptoms. Final pathology reported the mass as a vascular malformation, either a hemangioma or arteriovenous malformation. It has been postulated that estrogen and progesterone may stimulate the growth of hemangiomas, which may explain this patient’s post-partum presentation. This case demonstrates a perplexing axillary mass that continued to re-accumulate until final excision.</jats:p
Chronic Pneumatosis Intestinalis with Pneumoperitoneum and a Consistently Benign Abdominal Examination
The Influence of Auditors’ Moral Disengagement on Audit Quality in Medium and Large-Sized Firms in the United States: A Focus on Ethical Decision-Making
Moral disengagement in auditors is a critical factor when shaping choices made during audit services and audit quality. Each component of ethical disengagement, judgment, and audit reliability can be broken down into factors that further affect the overarching relationship. Data shows that as an auditor’s moral disengagement increases, less ethical choices are made. This inverse relationship substantiates the need for a higher standard of training that focuses on increasing the elements that positively influence the performance of an audit in larger firms. Lack of high-quality audits from Big Four firms in the U.S. decreases trust and leads to audit results
Filling the “green gap” of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red
AbstractThe major light-harvesting chlorophyll a/b complex (LHCII) greatly enhances the efficiency of photosynthesis in green plants. Recombinant LHCII can be assembled in vitro from its denatured, bacterially expressed apoprotein and plant pigments. This makes it an interesting candidate for biomimetic light-harvesting in photovoltaic applications. Due to its almost 20 pigments bound per apoprotein, LHCII absorbs efficiently in the blue and red spectral domains of visible light but less efficiently in the green domain, the so-called “green gap” in its absorption spectrum. Here we present a hybrid complex of recombinant LHCII with organic dyes that add to LHCII absorption in the green spectral region. One or three Rhodamine Red dye molecules were site-specifically attached to cysteine side chains in the apoprotein and did not interfere with LHCII assembly, function and stability. The dyes transferred their excitation energy virtually completely to the chlorophylls in LHCII, partially filling in the green gap. Thus, organic dyes can be used to increase the absorption cross section and, thus, the light-harvesting efficiency of recombinant LHCII
