414 research outputs found
Evolution of size-dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model
Understanding why individuals delay reproduction is a classic problem in evolutionary biology. In plants, the study of reproductive delays is complicated because growth and survival can be size and age dependent, individuals of the same size can grow by different amounts and there is temporal variation in the environment. We extend the recently developed integral projection approach to include size- and age-dependent demography and temporal variation. The technique is then applied to a long-term individually structured dataset for Carlina vulgaris, a monocarpic thistle. The parameterized model has excellent descriptive properties in terms of both the population size and the distributions of sizes within each age class. In Carlina, the probability of flowering depends on both plant size and age. We use the parameterized model to predict this relationship, using the evolutionarily stable strategy approach. Considering each year separately, we show that both the direction and the magnitude of selection on the flowering strategy vary from year to year. Provided the flowering strategy is constrained, so it cannot be a step function, the model accurately predicts the average size at flowering. Elasticity analysis is used to partition the size- and age-specific contributions to the stochastic growth rate, λs. We use λs to construct fitness landscapes and show how different forms of stochasticity influence its topography. We prove the existence of a unique stochastic growth rate, λs, which is independent of the initial population vector, and show that Tuljapurkar's perturbation analysis for log(λs) can be used to calculate elasticities
Age and size at maturity: sex, environmental variability and developmental thresholds
In most organisms, transitions between different life-history stages occur later and at smaller sizes as growth conditions deteriorate. Day and Rowe recently proposed that this pattern could be explained by the existence of developmental thresholds (minimum sizes or levels of condition below which transitions are unable to proceed). The developmental-threshold model predicts that the reaction norm of age and size at maturity will rotate in an anticlockwise manner from positive to a shallow negative slope if: (i) initial body size or condition is reduced; and/or (ii) some individuals encounter poor growth conditions at increasingly early developmental stages. We tested these predictions by rearing replicated populations of soil mites Sancassania berlesei (Michael) under different growth conditions. High-food environments produced a vertical relationship between age and size at maturity. The slope became increasingly shallow as food was reduced. By contrast, high food in the maternal environment reduced the slope of the reaction norm of age and size at maturity, whereas low food increased it. Overall, the reaction norm of age and size at maturity in S. berlesei was significantly nonlinear and differed for males and females. We describe how growth conditions, mother's environment and sex determine age and size at maturity in S. berlesei
Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation
International audienceAim: The landscape of the Neotropical region has undergone dynamic evolution throughout the Miocene, with the extensive Pebas wetland occupying western Amazonia between 23 and c. 10 Ma and the continuous uplift of the Andes mountains. The complex interaction between the Andes and Amazonia probably influenced the trajectory of Neotropical biodiversity, but evidence from time‐calibrated phylogenies of groups that diversified during this period is lacking. We investigate the role of these landscape transformations in the dynamics of diversification in the Neotropical region using a 26‐Myr‐old endemic butterfly radiation.Location: Neotropics.Time period: Oligocene to present.Major taxa studied: Ithomiini butterflies.Methods: We generated one of the most comprehensive time‐calibrated molecular phylogenies of a large clade of Neotropical insects, the butterfly tribe Ithomiini, comprising 340 species (87% of extant species) and spanning 26 Myr of diversification. We applied a large array of birth–death models and historical biogeography estimations to assess the dynamics of diversification and biotic interchanges, especially at the Amazonia–Andes interface.Results: Our results suggest that the Amazonian Pebas wetland system played a major role in the timing and geography of diversification of Ithomiini, by constraining dispersal and diversification in the Amazon basin until c. 10 Ma. During the Pebas wetland period, Ithomiini diversification mostly took place in the Andes, where terrestrial habitats were not affected. An explosion of interchanges with Amazonia and with the Northern Andes accompanied the demise of the Pebas system (11–8 Ma) and was followed by local diversification in those areas, which led to a substantial renewal of diversification.Main conclusions: Many studies on Neotropical diversity have focused only on the Andes, whereas we show that it is the waxing and waning of the Pebas mega‐wetland, interacting with Andean uplift, that determined the timing and patterns of regional interchanges and diversification in Ithomiini
Recommended from our members
EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve.
World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance.
Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity.
The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.
Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species
Persistence of attenuated HIV-1 rev alleles in an epidemiologically linked cohort of long-term survivors infected with nef-deleted virus
<p>Abstract</p> <p>Background</p> <p>The Sydney blood bank cohort (SBBC) of long-term survivors consists of multiple individuals infected with <it>nef</it>-deleted, attenuated strains of human immunodeficiency virus type 1 (HIV-1). Although the cohort members have experienced differing clinical courses and now comprise slow progressors (SP) as well as long-term nonprogressors (LTNP), longitudinal analysis of <it>nef</it>/long-terminal repeat (LTR) sequences demonstrated convergent <it>nef</it>/LTR sequence evolution in SBBC SP and LTNP. Thus, the <it>in vivo </it>pathogenicity of attenuated HIV-1 strains harboured by SBBC members is dictated by factors other than <it>nef</it>/LTR. Therefore, to determine whether defects in other viral genes contribute to attenuation of these HIV-1 strains, we characterized dominant HIV-1 <it>rev </it>alleles that persisted in 4 SBBC subjects; C18, C64, C98 and D36.</p> <p>Results</p> <p>The ability of Rev derived from D36 and C64 to bind the Rev responsive element (RRE) in RNA binding assays was reduced by approximately 90% compared to Rev derived from HIV-1<sub>NL4-3</sub>, C18 or C98. D36 Rev also had a 50–60% reduction in ability to express Rev-dependent reporter constructs in mammalian cells. In contrast, C64 Rev had only marginally decreased Rev function despite attenuated RRE binding. In D36 and C64, attenuated RRE binding was associated with rare amino acid changes at 3 highly conserved residues; Gln to Pro at position 74 immediately N-terminal to the Rev activation domain, and Val to Leu and Ser to Pro at positions 104 and 106 at the Rev C-terminus, respectively. In D36, reduced Rev function was mapped to an unusual 13 amino acid extension at the Rev C-terminus.</p> <p>Conclusion</p> <p>These findings provide new genetic and mechanistic insights important for Rev function, and suggest that Rev function, not Rev/RRE binding may be rate limiting for HIV-1 replication. In addition, attenuated <it>rev </it>alleles may contribute to viral attenuation and long-term survival of HIV-1 infection in a subset of SBBC members.</p
Recommended from our members
Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution
The Pontocaspian (Black Sea - Caspian Sea) region has a very dynamic history of basin development and biotic evolution. The region is the remnant of a once vast Paratethys Sea. It contains some of the best Eurasian geological records of tectonic, climatic and paleoenvironmental change. The Pliocene-Quaternary co-evolution of the Black Sea-Caspian Sea is dominated by major changes in water (lake and sea) levels resulting in a pulsating system of connected and isolated basins. Understanding the history of the region, including the drivers of lake level and faunal evolution, is hampered by indistinct stratigraphic nomenclature and contradicting time constraints for regional sedimentary successions. In this paper we review and update the late Pliocene to Quaternary stratigraphic framework of the Pontocaspian domain, focusing on the Black Sea Basin, Caspian Basin, Marmara Sea and the terrestrial environments surrounding these large, mostly endorheic lake-sea systems
Macrophage Tropism and Cytopathicity of HIV-1 Variants Isolated Sequentially from a Long-Term Survivor Infected with nef-Deleted Virus
Long-term survival of human immunodeficiency virus type 1 (HIV-1) infection has been noted in rare cohorts of individuals infected with nef-deleted virus. Enhanced macrophage tropism and cytopathicity contribute to pathogenicity of wild type HIV-1. To better understand the pathogenesis of nef-deleted HIV-1, we analyzed the replication capacity and macrophage cytopathicity of nef-deleted HIV-1 isolated sequentially from a long-term survivor during progression to AIDS (n=6 isolates). Compared with controls, all nef-deleted viruses replicated to low levels in peripheral blood mononu-clear cells and monocyte-derived macrophages (MDM). One nef-deleted virus that was isolated on the development of AIDS caused high levels of syncytia in MDM similar to control viruses, but five viruses isolated from earlier times prior to AIDS onset caused only minimal cytopathicity. Together, these results suggest that enhanced cytopathicity of nef-deleted HIV-1 for MDM can occur independently of replication capacity, and may contribute to the pathogenesis of nef-deleted HIV-1 infection
Prolonged wait time prior to entry to home care packages increases the risk of mortality and transition to permanent residential aged care services: findings from the Registry of Older South Australians (ROSA)
BACKGROUND:Older Australians prefer to live in their own homes for longer and reforms have attempted to increase the volume of home care packages (HCPs) accordingly but there remains a queue with the longer-term consequences unclear. OBJECTIVES:This study aims to characterise older Australians according to their wait times for a home care package (HCP), evaluate the association between wait time and mortality and evaluate the association between wait time and transition to permanent residential aged care services after HCP. DESIGN:A retrospective cohort study using data from the National Historical cohort (2003-2014) of the Registry of Older South Australians (ROSA) was conducted. SETTING:Home based aged care services, national cohort. METHODS:Wait time was estimated from approval date to date of receiving a HCP. Descriptive, survival estimates (95% confidence intervals (CIs)), and multivariable survival analyses (Cox-regression) were conducted to evaluate the risk of mortality and transition to permanent residential aged care services by quartiles of wait time for HCP. RESULTS:The cohort was followed for 4.0 years (interquartile range IQR (1.8-7.2)) and 38% were alive at the end of the study period with a median wait time for HCP of 62 (21-187) days. From 178,924 older people who received a HCP during the study period (2003-2013), 33.2% people received HCP within 30 days, 74.3% within 6 months and 25.7% after 6 months. The effect of wait time on risk of mortality was time-dependent, with longer wait times associated with higher mortality in the longer term. Compared to people who waited ≤30 days for a HCP, individuals who waited more than 6 months had an almost 20% excess risk of death (adjusted hazard ratio (aHR), 95%CI = (1.18, 1.16-1.21)) 2 years after entry into a HCP. Those who waited more than 6 months also had a 10% (1.10, 1.06-1.13) higher risk of transition to permanent residential aged care services after two years. CONCLUSION:Prolonged wait times for HCP is associated with a higher risk of long-term mortality as well as transition to permanent residential aged care. It remains to be seen if a shortening of this wait time translates into better health outcomes.Renuka Visvanathan, A. T. Amare, S. Wesselingh, R. Hearn, S. McKechnie, J. Mussared, M. C. Inaci
Phenotype and envelope gene diversity of nef-deleted HIV-1 isolated from long-term survivors infected from a single source
<p>Abstract</p> <p>Background</p> <p>The Sydney blood bank cohort (SBBC) of long-term survivors consists of multiple individuals infected with attenuated, <it>nef</it>-deleted variants of human immunodeficiency virus type 1 (HIV-1) acquired from a single source. Long-term prospective studies have demonstrated that the SBBC now comprises slow progressors (SP) as well as long-term nonprogressors (LTNP). Convergent evolution of <it>nef </it>sequences in SBBC SP and LTNP indicates the <it>in vivo </it>pathogenicity of HIV-1 in SBBC members is dictated by factors other than <it>nef</it>. To better understand mechanisms underlying the pathogenicity of <it>nef</it>-deleted HIV-1, we examined the phenotype and <it>env </it>sequence diversity of sequentially isolated viruses (n = 2) from 3 SBBC members.</p> <p>Results</p> <p>The viruses characterized here were isolated from two SP spanning a three or six year period during progressive HIV-1 infection (subjects D36 and C98, respectively) and from a LTNP spanning a two year period during asymptomatic, nonprogressive infection (subject C18). Both isolates from D36 were R5X4 phenotype and, compared to control HIV-1 strains, replicated to low levels in peripheral blood mononuclear cells (PBMC). In contrast, both isolates from C98 and C18 were CCR5-restricted. Both viruses isolated from C98 replicated to barely detectable levels in PBMC, whereas both viruses isolated from C18 replicated to low levels, similar to those isolated from D36. Analysis of <it>env </it>by V1V2 and V3 heteroduplex tracking assay, V1V2 length polymorphisms, sequencing and phylogenetic analysis showed distinct intra- and inter-patient <it>env </it>evolution.</p> <p>Conclusion</p> <p>Independent evolution of <it>env </it>despite convergent evolution of <it>nef </it>may contribute to the <it>in vivo </it>pathogenicity of <it>nef</it>-deleted HIV-1 in SBBC members, which may not necessarily be associated with changes in replication capacity or viral coreceptor specificity.</p
Intestinal microbiology shapes population health impacts of diet and lifestyle risk exposures in torres strait islander communities
Poor diet and lifestyle exposures are implicated in substantial global increases in non-communicable disease burden in low-income, remote, and Indigenous communities. This observational study investigated the contribution of the fecal microbiome to influence host physiology in two Indigenous communities in the Torres Strait Islands: Mer, a remote island where a traditional diet predominates, and Waiben a more accessible island with greater access to takeaway food and alcohol. Counterintuitively, disease markers were more pronounced in Mer residents. However, island-specific differences in disease risk were explained, in part, by microbiome traits. The absence of Alistipes onderdonkii, for example, significantly (p=0.014) moderated island-specific patterns of systolic blood pressure in multivariate-adjusted models. We also report mediatory relationships between traits of the fecal metagenome, disease markers, and risk exposures. Understanding how intestinal microbiome traits influence response to disease risk exposures is critical for the development of strategies that mitigate the growing burden of cardiometabolic disease in these communities
- …
