1,835 research outputs found

    Alternative hypotheses linking the immune system and mate choice for good genes

    Get PDF
    Why do males often have extravagant morphological and behavioural traits, and why do females prefer to mate with such males? The answers have been the focus of considerable debate since Darwin's 'The descent of man, and selection in relation to sex' appeared in 1871. Recently, the broadening of investigation to include fields outside evolutionary biology has shed new light on mate choice and sexual selection. Here, we focus on a specific set of hypotheses relating the biology of resisting disease-causing organisms with the production of condition-dependent sexual signals (advertisements). We present a framework that distinguishes three different hypotheses about trade-offs within the immune system that affect general condition. The original Hamilton & Zuk hypothesis suggests that hosts fight off disease via resistance to particular pathogens, which lowers resistance to other pathogens. Changes in pathogens over evolutionary time in turn favours changes in which genes confer the best resistance. Alternatively, the immunocompetence hypotheses suggest that the energetic costs of mounting a response to any pathogen compete for resources with other things, such as producing or maintaining advertisements. Finally, improving resistance to pathogens could increase the negative impacts of the immune system on the host, via immunopathologies such as allergies or autoimmune diseases. If both disease and immunopathology affect condition, then sexual advertisements could signal a balance between the two. Studies of hypothesized links between genes, condition, the immune system and advertisements will require careful consideration of which hypothesis is being considered, and may necessitate different measures of immune system responses and different experimental protocols

    Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Get PDF
    BACKGROUND: Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. RESULTS: Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. CONCLUSION: Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation

    Mate choice in sticklebacks reveals that immunogenes can drive ecological speciation

    Get PDF
    Adaptation to ecologically contrasting niches can lead to the formation of new species. Theoretically, this process of ecological speciation can be driven by pleiotropic “magic traits” that genetically link natural and sexual selection. To qualify as a true magic trait, the pleiotropic function of a gene must be reflected in biologically relevant mechanisms underlying both local adaptation and mate choice. The immune genes of the major histocompatibility complex (MHC) contribute to parasite resistance and also play a major role in sexual selection. Hence, the MHC may encode a candidate magic trait. Using diverging 3-spined stickleback populations from a connected lake–river habitat, we show with mate choice experiments in a flow channel that polymorphic MHC genes probably underlie assortative mating with respect to particular habitat-adapted ecotypes, potentially resulting in reproductive isolation. By manipulating olfactory cues in controlled experiments, we show that female sticklebacks employ MHC-dependent male olfactory signals to select mates with which they can achieve a habitat-specific MHC gene structure that optimally protects their offspring against local parasites. By using MHC-based olfactory signals, females thus select individuals of their own population as mates. Our results demonstrate how mate choice and parasite resistance may be functionally linked. These findings suggest that MHC genes are pleiotropic and encode a true magic trait of biologically significant effect

    A comparison of facial expression properties in five hylobatid species

    Get PDF
    Little is known about facial communication of lesser apes (family Hylobatidae) and how their facial expressions (and use of) relate to social organization. We investigated facial expressions (defined as combinations of facial movements) in social interactions of mated pairs in five different hylobatid species belonging to three different genera using a recently developed objective coding system, the Facial Action Coding System for hylobatid species (GibbonFACS). We described three important properties of their facial expressions and compared them between genera. First, we compared the rate of facial expressions, which was defined as the number of facial expressions per units of time. Second, we compared their repertoire size, defined as the number of different types of facial expressions used, independent of their frequency. Third, we compared the diversity of expression, defined as the repertoire weighted by the rate of use for each type of facial expression. We observed a higher rate and diversity of facial expression, but no larger repertoire, in Symphalangus (siamangs) compared to Hylobates and Nomascus species. In line with previous research, these results suggest siamangs differ from other hylobatids in certain aspects of their social behavior. To investigate whether differences in facial expressions are linked to hylobatid socio-ecology, we used a Phylogenetic General Least Square (PGLS) regression analysis to correlate those properties with two social factors: group-size and level of monogamy. No relationship between the properties of facial expressions and these socio-ecological factors was found. One explanation could be that facial expressions in hylobatid species are subject to phylogenetic inertia and do not differ sufficiently between species to reveal correlations with factors such as group size and monogamy level. Am. J. Primatol. 76:618-628, 2014

    Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles)

    Get PDF
    Extra-group paternity (EGP) occurs commonly among group-living mammals and plays an important role in mating systems and the dynamics of sexual selection; however, socio-ecological and genetic correlates of EGP have been underexplored. We use 23 years of demographic and genetic data from a high-density European badger (Meles meles) population, to investigate the relationship between the rate of EGP in litters and mate availability, mate incompatibility and mate quality (heterozygosity). Relatedness between within-group assigned mothers and candidate fathers had a negative quadratic effect on EGP, whereas the number of neighbouring-group candidate fathers had a linear positive effect. We detected no effect of mean or maximum heterozygosity of within-group candidate fathers on EGP. Consequently, EGP was associated primarily with mate availability, subject to within-group genetic effects, potentially to mitigate mate incompatibility and inbreeding. In badgers, cryptic female choice, facilitated by superfecundation, superfoetation and delayed implantation, prevents males from monopolizing within-group females. This resonates with a meta-analysis in group-living mammals, which proposed that higher rates of EGP occur when within-group males cannot monopolize within-group females. In contrast to the positive meta-analytic association, however, we found that EGP associated negatively with the number of within-group assigned mothers and the number of within-group candidate fathers; potentially a strategy to counter within-group males committing infanticide. The relationship between the rate of EGP and socio-ecological or genetic factors can therefore be intricate, and the potential for cryptic female choice must be accounted for in comparative studies

    \u27Home on Film\u27

    Get PDF

    A practical guide and power analysis for GLMMs: detecting among treatment variation in random effects

    Get PDF
    In ecology and evolution generalized linear mixed models (GLMMs) are becoming increasingly used to test for differences in variation by treatment at multiple hierarchical levels. Yet, the specific sampling schemes that optimize the power of an experiment to detect differences in random effects by treatment/group remain unknown. In this paper we develop a blueprint for conducting power analyses for GLMMs focusing on detecting differences in variance by treatment. We present parameterization and power analyses for random-intercepts and random-slopes GLMMs because of their generality as focal parameters for most applications and because of their immediate applicability to emerging questions in the field of behavioral ecology. We focus on the extreme case of hierarchically structured binomial data, though the framework presented here generalizes easily to any error distribution model. First, we determine the optimal ratio of individuals to repeated measures within individuals that maximizes power to detect differences by treatment in among-individual variation in intercept, among-individual variation in slope, and within-individual variation in intercept. Second, we explore how power to detect differences in target variance parameters is affected by total variation. Our results indicate heterogeneity in power across ratios of individuals to repeated measures with an optimal ratio determined by both the target variance parameter and total sample size. Additionally, power to detect each variance parameter was low overall (in most cases >1,000 total observations per treatment needed to achieve 80% power) and decreased with increasing variance in non-target random effects. With growing interest in variance as the parameter of inquiry, these power analyses provide a crucial component for designing experiments focused on detecting differences in variance. We hope to inspire novel experimental designs in ecology and evolution investigating the causes and implications of individual-level phenotypic variance, such as the adaptive significance of within-individual variation

    Pengembangan Media Pembelajaran Matematika Berbantu Wondershare dengan Pendekatan Rme pada Materi SMP

    Get PDF
    Pemilihan media pembelajaran yang kurang tepat dapat membuat siswa kurang antusias terhadap mata pelajaran matematika. Sehingga banyak siswa yang mendapat nilai dibawah KKM. Solusinya dibutuhkan media pembelajaran yang menarik serta dapat menumbuhkan antusias siswa dalam belajar.Penelitian ini bertujuan untuk mengembangkan media pembelajaran berbantu wondershare dengan pendekatan RME sehingga menghasilkan media yang layak dan efektif digunakan selama pembelajaran. Jenis penelitian ini adalah penelitian Research and Development dengan menggunakan model pengembangan ADDIE, terdiri dari 5 tahapan yaitu analisis, design, developmen, implementasi, evaluasi.Sebelum diimplementasikan, media pembelajaran terlebih dahulu dilakukan uji validasi oleh ahli media, ahli materi serta angket tanggapan siswa. Hasil validasi ahli tersebut berkriteria sangat baik sehingga media pembelajaran layak untuk digunakan.Pembelajaran dengan media pembelajaran berbantu wondershare dengan pendekatan RME efektif digunakan oleh peserta didik. Hal ini di buktikan dari rata rata kelas eksperimen dan kontrol yaitu 82,03 dan 60,54. Ketuntasan belajar individu kelas ekperimen terdapat 31 siswa tuntas dari 36 siswa, dan kelas kontrol terdapat 8 siswa tuntas dari 27 siswa. Dilihat dari ketuntasan belajar klasikal siswa untuk kelas kontrol dan eksperimen sebesar 22,86% dan 86,11%. Dengan analisis menggunakan uji t pihak kanan diperoleh nilaiyaitu 9,607>1,667 maka H0 ditolak, jadi pembelajaran dengan menggunakan media pembelajaran berbantuan wondershare dengan pendekatan RME lebih baik dibandingkan dengan pembelajaran konvensional pada materi SMP

    \u27More Pink, Please\u27 & \u27Black History Month\u27

    Get PDF
    corecore