20 research outputs found

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB

    Get PDF
    BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML

    Le Village suisse comme modèle d'urbanisme

    Get PDF
    This chapter introduces systems biology, its context, aims, concepts and strategies. It then describes approaches and methods used for collection of high-dimensional structural and functional genomics data, including epigenomics, transcriptomics, proteomics, metabolomics and lipidomics, and how recent technological advances in these fields have moved the bottleneck from data production to data analysis and bioinformatics. Finally, the most advanced mathematical and computational methods used for clustering, feature selection, prediction analysis, text mining and pathway analysis in functional genomics and systems biology are reviewed and discussed in the context of use cases

    How to Develop a Drug Target Ontology: KNowledge Acquisition and Representation Methodology (KNARM)

    No full text
    Technological advancements in many fields have led to huge increases in data production, including data volume, diversity, and the speed at which new data is becoming available. In accordance with this, there is a lack of conformity in the ways data is interpreted. This era of "big data" provides unprecedented opportunities for data-driven research and "big picture" models. However, in-depth analyses-making use of various data types and data sources and extracting knowledge-have become a more daunting task. This is especially the case in life sciences where simplification and flattening of diverse data types often lead to incorrect predictions. Effective applications of big data approaches in life sciences require better, knowledge-based, semantic models that are suitable as a framework for big data integration, while avoiding oversimplifications, such as reducing various biological data types to the gene level. A huge hurdle in developing such semantic knowledge models, or ontologies, is the knowledge acquisition bottleneck. Automated methods are still very limited, and significant human expertise is required. In this chapter, we describe a methodology to systematize this knowledge acquisition and representation challenge, termed KNowledge Acquisition and Representation Methodology (KNARM). We then describe application of the methodology while implementing the Drug Target Ontology (DTO). We aimed to create an approach, involving domain experts and knowledge engineers, to build useful, comprehensive, consistent ontologies that will enable big data approaches in the domain of drug discovery, without the currently common simplifications
    corecore