6,827 research outputs found
Universality of Load Balancing Schemes on Diffusion Scale
We consider a system of parallel queues with identical exponential
service rates and a single dispatcher where tasks arrive as a Poisson process.
When a task arrives, the dispatcher always assigns it to an idle server, if
there is any, and to a server with the shortest queue among randomly
selected servers otherwise . This load balancing scheme
subsumes the so-called Join-the-Idle Queue (JIQ) policy and the
celebrated Join-the-Shortest Queue (JSQ) policy as two crucial
special cases. We develop a stochastic coupling construction to obtain the
diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime,
and establish that it does not depend on the value of , implying that
assigning tasks to idle servers is sufficient for diffusion level optimality
A selective transformation of enals into chiral γ-amino alcohols.
A one-pot synthesis of chiral amino alcohols from α,β-unsaturated aldehydes is reported which circumvents competitive 1,2- versus 1,4-boryl addition, by means of using a sterically hindered amine-derived imine. In addition to the complete chemoselectivity, modification of the Cu(I) catalyst with readily available chiral diphosphines, such as (R)-DM-BINAP, gave the 1,4-boryl addition products with high levels of asymmetric induction
HI and OH absorption in the lensing galaxy of MG J0414+0534
We report the detection of \HI 21-cm absorption in the early-type
lensing galaxy towards MG J0414+0534 with the Green Bank Telescope. The
absorption, with total , is resolved into two strong components, probably due to the two
strongest lens components, which are separated by 0.4\arcsec. Unlike the other
three lenses which have been detected in \HI, J0414+0534 does not exhibit
strong OH absorption, giving a OH/\HI column density ratio of N_{\rm
OH}/N_{\rm HI}\lapp10^{-6} (for K, K and
). This underabundance of molecular gas may indicate
that the extreme optical--near-IR colour () along the line-of-sight
is not due to the lens. We therefore suggest that despite the strong upper
limits on molecular absorption at the quasar redshift, as traced by millimetre
lines, the extinction occurs primarily in the quasar host galaxy.Comment: Accepted by MNRAS Letters, 5 (and a bit) pages, 5 figure
Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost
Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming
Dynamic and Thermodynamic Stability and Negative Modes in Schwarzschild-Anti-de Sitter
The thermodynamic properties of Schwarzschild-anti-de Sitter black holes
confined within finite isothermal cavities are examined. In contrast to the
Schwarzschild case, the infinite cavity limit may be taken which, if suitably
stated, remains double valued. This allows the correspondence between
non-existence of negative modes for classical solutions and local thermodynamic
stability of the equilibrium configuration of such solutions to be shown in a
well defined manner. This is not possible in the asymptotically flat case.
Furthermore, the non-existence of negative modes for the larger black hole
solution in Schwarzschild-anti-de Sitter provides strong evidence in favour of
the recent positive energy conjecture by Horowitz and Myers.Comment: 21 pages, 5 figures, LaTe
- …
