235 research outputs found
A human MAP kinase interactome.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity
The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity
Public division about climate change rooted in conflicting socio-political identities
Of the climate science papers that take a position on the issue, 97% agree that climate change is caused by humans1, but less than half of the US population shares this belief2. This misalignment between scientific and public views has been attributed to a range of factors, including political attitudes, socio-economic status, moral values, levels of scientific understanding, and failure of scientific communication. The public is divided between climate change 'believers' (whose views align with those of the scientific community) and 'sceptics' (whose views are in disagreement with those of the scientific community). We propose that this division is best explained as a socio-political conflict between these opposing groups. Here we demonstrate that US believers and sceptics have distinct social identities, beliefs and emotional reactions that systematically predict their support for action to advance their respective positions. The key implication is that the divisions between sceptics and believers are unlikely to be overcome solely through communication and education strategies, and that interventions that increase angry opposition to action on climate change are especially problematic. Thus, strategies for building support for mitigation policies should go beyond attempts to improve the public’s understanding of science, to include approaches that transform intergroup relations
Recommended from our members
Subjectivity in a context of environmental change: opening new dialogues in mental health research
In a period of unstable experimentation with challenges of globalization of associated risks, and disenchantment with ‘enduring injustice’, we bring forward a consideration of subjectivity to the study of environmental change and mental health. We begin by identifying how mainstream climate change and mental health studies are unable to explain the emergent and co-evolutionary pathways of agency. As a means of freeing these studies of their objective dimensions of linear-causation, we argue in favour of a re-positioning of subjectivity within an appreciation of recognition conflicts and beyond the over-deterministic interpretations of power centres—state, market or religion. We draw on one example of scientific research that was conducted in a region undergoing strong environmental, social and cultural changes, in the state of São Paulo/Brazil, with the aim to open mental health research to new dialogues, to which we contribute with the notion of the ‘pluriversal subject’
Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.
Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR) was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK) and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination
Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation
Background:
Chemotherapy-induced reduction in tumor load is a function of apoptotic cell death, orchestrated by intracellular caspases. However, the effectiveness of these therapies is compromised by mutations affecting specific genes, controlling and/or regulating apoptotic signaling. Therefore, it is desirable to identify novel pathways of cell death, which could function in tandem with or in the absence of efficient apoptotic machinery. In this regard, recent evidence supports the existence of a novel cell death pathway termed autophagy, which is activated upon growth factor deprivation or exposure to genotoxic compounds. The functional relevance of this pathway in terms of its ability to serve as a stress response or a truly death effector mechanism is still in question; however, reports indicate that autophagy is a specialized form of cell death under certain conditions.
Methodology/Principal Findings:
We report here the simultaneous induction of non-canonical autophagy and apoptosis in human cancer cells upon exposure to a small molecule compound that triggers intracellular hydrogen peroxide (H2O2) production. Whereas, silencing of beclin1 neither inhibited the hallmarks of autophagy nor the induction of cell death, Atg 7 or Ulk1 knockdown significantly abrogated drug-induced H2O2-mediated autophagy. Furthermore, we provide evidence that activated extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) are upstream effectors controlling both autophagy and apoptosis in response to elevated intracellular H2O2. Interestingly, inhibition of JNK activity reversed the increase in Atg7 expression in this system, thus indicating that JNK may regulate autophagy by activating Atg7. Of note, the small molecule compound triggered autophagy and apoptosis in primary cells derived from patients with lymphoma, but not in non-transformed cells.
Conclusions/Significance:
Considering that loss of tumor suppressor beclin 1 is associated with neoplasia, the ability of this small molecule compound to engage both autophagic and apoptotic machineries via ROS production and subsequent activation of ERK and JNK could have potential translational implications.Singapore. Biomedical Research CouncilSingapore. Ministry of Educatio
A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant’ and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold’ to induce death; an observation that is both of fundamental importance and carries implications for cancer therap
Modulation of Interleukin-1 Transcriptional Response by the Interaction between VRK2 and the JIP1 Scaffold Protein
Background. Cellular biological responses to specific stimulation are determined by a balance among signaling pathways. Protein interactions are likely to modulate these pathways. Vaccinia-related kinase-2 (VRK2) is a novel human kinase that can modulate different signaling pathways.
Principal findings. We report that in vivo, the activity of JIP1-JNK complexes is downregulated by VRK2 in response to interleukin-1β. Also the reduction of endogenous VRK2 with shRNA increases the transcriptional response to IL-1β. The JIP1 scaffold protein assembles three consecutive members of a given MAPK pathway forming signaling complexes and their signal can be modulated by interactions with regulatory proteins that remain to be identified. Knocking-down JIP1 with siRNA resulted in elimination of the AP1 transcriptional response to IL-1β. VRK2, a member of novel Ser-Thr kinase family, is able to stably interact with JIP1, TAK1 and MKK7, but not JNK, and can be isolated forming oligomeric complexes with different proportions of TAK1, MKK7β1 and JNK. JIP1 assembles all these proteins in an oligomeric signalosome. VRK2 binding to the JIP1 signalosome prevents the association of JNK and results in a reduction in its phosphorylation and downregulation of AP1-dependent transcription.
Conclusions/Significance. This work suggests that the intracellular level of VRK2 protein can modulate the flow through a signaling pathway and alter the response from a receptor that can be distributed by more than one pathway, and thus contribute to the cellular specificity of the response by forming alternative signaling complexes. Furthermore, the effect might be more general and affect other signaling routes assembled on the JIP1 scaffold protein for which a model is proposed.S.B., M. S-G, and C.R.S. have predoctoral fellowships from Ministerio de Educación y Ciencia, CSIC (Spain) and Fundação para a Ciência e a Tecnologia (Portugal) respectively. This work was funded by grants from Ministerio de Educación y Ciencia (SAF2004-02900, SAF2007-60242 and Consolider CSD-2007-0017), Fundación de Investigación Médica MM and Federación de Cajas de Ahorro de Castilla y León to P.A.L.Peer reviewe
Emerging roles of ATF2 and the dynamic AP1 network in cancer
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
Plasma membrane receptor mediated MAPK signaling pathways are activated in human uterine cervix at parturition
BACKGROUND: Cervical ripening resembles an inflammatory reaction. Estrogens induce leukocyte migration into tissue and factors promoting cervical remodeling and labor, although the mechanisms are only partially known. The aim of this study was to investigate whether plasma membrane receptor mediated pathways, known to be activated by estrogens and proinflammatory compounds, are involved in cervical ripening before labor. METHODS: The expression and distribution of mitogen activated protein kinases (MAPK), which transduce extracellular signals into intracellular responses through phosphorylation, and their intracellular targets transcription factors c-Jun and c-Fos proteins (AP-1) were analysed in cervical biopsies from term pregnant women (TP), immediately after parturition (PP), and from non-pregnant women (NP). Immunohistochemistry and RT-PCR techniques were used. RESULTS: Cell-specific alterations in the immunostaining pattern for MAPK were observed. The expressions of activated, phosphorylated MAPK forms pERK1/2, pJNK and p38MAPK were significantly increased in cervical stroma until TP and pERK1/2 expression was significantly enhanced in PP group. c-Jun was significantly increased in cervical stroma and smooth muscle in TP as compared to NP group. c-Fos was significantly increased in stroma, squamous epithelium and glandular epithelium in PP as compared to TP group. CONCLUSION: We report, for the first time, cell-specific activation of pMAPKs and their targets transcription factors c-Fos and c-Jun (AP-1) proteins in human uterine cervix until term pregnancy, and immediately after parturition. These results suggest a role for MAPK activation in cervical ripening before labor
- …
