7,120 research outputs found

    The measurement of air supply volumes and velocities in cleanrooms

    Get PDF
    Air supply volumes and velocities in cleanrooms are monitored by airflow measuring hoods and anemometers but these measuring methods can be inaccurate if used incorrectly. It is demonstrated in this article that measuring hoods are accurate if the air supply passes evenly out of the hood, as occurs when the air volume is measured from a four-way diffuser or no air supply diffuser. However, when a swirl diffuser was investigated, the measuring hood gave readings more than 50% greater than the true volume. The reasons for the inaccuracy, and methods to correct it were established. Vane anemometers give inaccurate readings at the face of high-efficiency air supply filters, and it was found that the most accurate reading was found about 15 cm from the filter face. The number of readings required across the filter face to obtain an accurate average velocity was investigated, as was a scanning method using overlapping passes

    Removal of microbe-carrying particles by high efficiency air filters in cleanrooms

    Get PDF
    The removal efficiency of high efficiency air filters against microbe-carrying particles (MCPs) in the air supply of occupied rooms, such as cleanrooms, was determined. Knowing the size distribution of MCPs in the air to be filtered, and the removal efficiency of a filter against individual particle diameters, the overall removal efficiency was ascertained. A variety of filters were investigated, and it was found that a filter 90% efficient, when tested against sub-micrometre particles, used in standard classification methods such as EN 1822, was greater than 99.99% efficient in removing MCPs. The effect of filter efficiency on the quality of the air supply, and the concentration of MCPs in cleanroom air was also studied. No practical improvement in airborne concentrations was obtained by filters that had a removal efficiency greater than 99.99% against MCPs. Use of a filter suitable for removing MCPs, rather than sub-micrometre particles, would give a reduction of about 6 to 8-fold in the pressure drop over a filter, and a substantial reduction in the cost of running a cleanroom

    Experimental and CFD airflow studies of a cleanroom with special respect to air supply inlets

    Get PDF
    Investigations were carried out into the airflow in a non-unidirectional airflow cleanroom and its affect on the local airborne particle cleanliness The main influence was the method of air supply A supply inlet with no diffuser gave a pronounced downward jet flow and low levels of contamination below it, but poorer than average conditions in much of the rest of the room A 4-way diffuser gave much better air mixing and a more even airborne particle concentration throughout the cleanroom Other variables such as air inlet supply velocity, temperature difference between air supply and the room, and the release position of contamination also influenced the local airborne cleanliness A CFD analysis of airflow fields in a cleanroom was compared with measured values It was considered that a turbulent intensity of 6%, and a hydraulic diameter based on the actual size of the air inlet, should be used for the inlet boundary conditions and, when combined with a k-epsilon standard turbulence model, a reasonable prediction of the airflow and airborne particle concentration was obtained

    Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm

    Get PDF
    We use a three-dimensional Gerchberg–Saxton algorithm (Shabtay (2003) Opt. Commun. 226 33) to calculate the Fourier-space representation of physically realizable light beams with arbitrarily shaped three-dimensional intensity distributions. From this representation we extract a phase-hologram pattern that allows us to create such light beams experimentally. We show several examples of experimentally shaped light beams

    Removal efficiency of high efficiency air filters against microbe-carrying particles (MCPs) in cleanrooms

    Get PDF
    The removal efficiency of high efficiency air filters was determined against microbe-carrying particles (MCPs) in the air supply to cleanrooms. Knowing the size distribution of MCPs in the air to be filtered, and the filter's removal efficiency against individual particle diameters, the overall removal efficiency was ascertained. The removal efficiency of individual species of microbes with a known size was also obtained. A variety of filters were investigated, and it was found that a filter 90% efficient against the most penetrating particle size (as classified by EN 1822) was greater than 99.99% efficient in removing a MCPs. The effect of filter efficiency on the microbial concentration in both the air supply and the cleanroom air was studied, and no practical improvement in the air quality was obtained by filters that had a removal efficiency greater than 99.99% against MCPs. Use of a filter suitable for removing MCPs, rather than sub-micrometre particles, would give a reduction of about 6 to 8-fold in the pressure differential across the filter, and a substantial reduction in the energy costs of running a cleanroom

    The validity of capillary blood sampling in the determination of human growth hormone concentration during exercise in men

    Get PDF
    This is an open access article - Copyright © 2004 BMJ Publishing Group LtdBACKGROUND: Studies measuring human growth hormone (hGH) in blood during exercise have mainly used venous sampling. The invasive nature of this procedure makes evaluation of hGH impossible in various exercise environments. OBJECTIVE: To determine whether capillary sampling could offer an alternative sampling method. METHODS: Capillary and venous blood samples were collected for determination of hGH at the end of each exercise stage during an incremental exercise test in 16 male club level competitive cyclists (mean (SD) age 30.8 (8.0) years, body mass 72.2 (7.1) kg, body fat 12.9 (3.5)%, peak oxygen consumption 4.18 (0.46) l⋅min−1). Linear regression, from a plot of venous v capillary blood hGH concentration, showed a correlation coefficient of r = 0.986 (p<0.001). When geometric means and log transformations were used, a coefficient of variation of 14.2% was demonstrated between venous and capillary flow for hGH concentration. The mean ratio limits of agreement were 0.62 (1.72)—that is, 95% of the ratios were contained between 0.36 and 1.07, with a mean of 0.62. CONCLUSIONS: Capillary blood sampling is an acceptable alternative to venous sampling for determining hGH concentration during rest and exercise. Sample sites should not be used interchangeably: one site should be chosen and its use standardised

    Empirical modelling and simulation of transmission loss between wireless sensor nodes in gas turbine engines

    Get PDF
    Transmission loss measurements between a grid of hypothetical WSN node locations on the surface of a gas turbine engine are reported for eight frequencies at 1 GHz intervals in the frequency range 3.0 to 11.0 GHz. An empirical transmission loss model is derived from the measurements. The model is incorporated into an existing system channel model implemented using Simulink as part of a wider project concerning the development of WSNs for the testing and condition monitoring of gas turbine engines

    50-nm self-aligned and 'standard' T-gate InP pHEMT comparison: the influence of parasitics on performance at the 50-nm node

    Get PDF
    Continued research into the development of III-V high-electron mobility transistors (HEMTs), specifically the minimization of the device gate length, has yielded the fastest performance reported for any three terminal devices to date. In addition, more recent research has begun to focus on reducing the parasitic device elements such as access resistance and gate fringing capacitance, which become crucial for short gate length device performance maximization. Adopting a self-aligned T-gate architecture is one method used to reduce parasitic device access resistance, but at the cost of increasing parasitic gate fringing capacitances. As the device gate length is then reduced, the benefits of the self-aligned gate process come into question, as at these ultrashort-gate dimensions, the magnitude of the static fringing capacitances will have a greater impact on performance. To better understand the influence of these issues on the dc and RF performance of short gate length InP pHEMTs, the authors present a comparison between In0.7Ga0.3As channel 50-nm self-aligned and "standard" T-gate devices. Figures of merit for these devices include transconductance greater than 1.9 S/mm, drive current in the range 1.4 A/mm, and fT up to 490 GHz. Simulation of the parasitic capacitances associated with the self-aligned gate structure then leads a discussion concerning the realistic benefits of incorporating the self-aligned gate process into a sub-50-nm HEMT syste

    Vortex sorter for Bose-Einstein condensates

    Get PDF
    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modelled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of 2-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing.Comment: 4 pages, high resolution figures can be obtained from the author

    The first experimental flight package of an advanced telemetry system with adaptive capability Technical summary report, 1 Jul. 1963 - 15 Feb. 1965

    Get PDF
    Mechanical design, and environmental and functional testing of advanced telemetry system flight package with adaptive capabilit
    corecore