16 research outputs found

    Analysis of 'hummocky moraine' using Structure-from-Motion photogrammetry

    Get PDF
    This study presents results of a high-resolution topographic survey of the proglacial area of Austre Lovénbreen, Svalbard. Structure-from-Motion (SfM) was used to generate a digital elevation model (DEM) of the proglacial zone from aerial imagery. This DEM is used to explore the topography of a zone of hummocky moraine within the glacier’s Neoglacial limit. The origin of hummocky moraine has proven controversial, but detailed morphological studies can contribute to a better understanding of how these features form, and the extent to which they may be preserved in the palaeo-glaciological record, including within northwest Britain. In cross-profile, hummocky moraine is characterised by a sequence of asymmetrical ridges, with longer, low angle up-glacier faces, and shorter, steeper down-glacier faces. This profile is interpreted to represent a sequence of ridges stacked-up against a bedrock riegel and reverse bedslope. Whilst the origin of these features is uncertain, the enhanced compression associated with glacier flow against a bedrock riegel, possibly during a glacier surge, may have been sufficient to have generated debris-rich englacial thrusts that subsequently melted-out to form the observed hummocky moraine. The significance of this research highlights ongoing studies aimed at understanding the origin and palaeo-glaciological significance of hummocky moraine in northwest Britain

    A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    Get PDF
    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature

    Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity

    No full text
    Sol–gel layers have been the subject of many studies in recent decades. However, very little information exists about layers in which carbon structures are developed in situ. Using the spin-coating method, we obtained thin iron-doped SiO2/C composite films. The results of Raman spectroscopy showed that our samples consisted of graphitic forms and polymers. The latter’s contribution decreases with rising temperature. FTIR and EDS studies show changes in carbon distribution on top of the layer, depending on the sintering temperature. The samples sintered at 800 °C showed a significant increase in the contribution of carbon forms to the layer’s surface. Therefore, high conductivity can be observed in this sample. The results of XPS spectroscopy showed that the contribution of sp3 hybridized carbon increases after etching. The total electrical conductivity, studied by a DC four-wire technique, increased with the temperature and showed almost linear characteristics with significant changes below 150 K. The reduced activation energy plot has a positive temperature coefficient, which is a characteristic property of the conductive polymers in a metallic regime of conductivity

    Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity

    No full text
    Sol–gel layers have been the subject of many studies in recent decades. However, very little information exists about layers in which carbon structures are developed in situ. Using the spin-coating method, we obtained thin iron-doped SiO2/C composite films. The results of Raman spectroscopy showed that our samples consisted of graphitic forms and polymers. The latter’s contribution decreases with rising temperature. FTIR and EDS studies show changes in carbon distribution on top of the layer, depending on the sintering temperature. The samples sintered at 800 °C showed a significant increase in the contribution of carbon forms to the layer’s surface. Therefore, high conductivity can be observed in this sample. The results of XPS spectroscopy showed that the contribution of sp3 hybridized carbon increases after etching. The total electrical conductivity, studied by a DC four-wire technique, increased with the temperature and showed almost linear characteristics with significant changes below 150 K. The reduced activation energy plot has a positive temperature coefficient, which is a characteristic property of the conductive polymers in a metallic regime of conductivity.</jats:p

    The Influence of Thermal Conditions on V2O5 Nanostructures Prepared by Sol-Gel Method

    Get PDF
    This work presents the result of structure investigations of V2O5 nanorods grown from thin films and powders prepared by sol-gel method. To examine the best temperature of nanorods crystallization, thin films deposited by spin-coating method on quartz glass or silicon substrates and bulk xerogel powders were annealed at various temperatures ranging from 100°C to 600°C. The structure of the samples was characterized by X-ray diffraction method (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mass spectroscopy (MS). The rod-like structure of V2O5 was obtained at 600°C on both quartz glass and silicon substrates and also from the bulk xerogel. The growth process and the effect of annealing treatment on the nanostructure are briefly discussed

    Enhancing electrical properties through in-situ controlled nanocrystallization of V₂O₅–TeO₂ glass

    No full text
    V₂O₅–TeO₂ glass–ceramics (VTGC) were prepared by controlled annealing of the V₂O₅–TeO₂ glass (VTG), which illustrates a parent glass matrix with a single charge carrier. The annealing proceeded at six temperatures selected between the glass transition and the maximum of the first crystallization process to obtain various nanocrystallite sizes. Heat treatment caused an increase in DC conductivity by 2.5–3.5 (250–285 °C) order of magnitude. Using thermal analysis, the crystal growth process was determined to be 1D. Structural studies show that the obtained materials are partially amorphous and polycrystalline with nanometer-sized crystallites. Subtle thread-like structures were observed using conductive AFM. The activation energy of the conduction process decreased from 0.38 eV in VTG to 0.18–0.11 eV (250–285 °C) in VTGC. The radii of crystallites were calculated based on the theoretical model of electron hopping between connected semiconducting nanocrystallites and vary between 1.7 and 2.8 nm (250–285 °C). Thermoelectric studies indicate constant carrier concentration. Features characteristic of small polaron hopping-governed materials were observed. We suggest V₃O₇ nanocrystals as conductive media in VTGC. Graphical abstract: (Figure presented.
    corecore