1,174 research outputs found
Effect of dog breed and body conformation on vertical ground reaction forces, impulses, and stance times
OBJECTIVES:
To assess whether fully normalised vertical ground reaction forces and stance times obtained at a trot depend on dog breed or body conformations.
METHODS:
Peak vertical forces (PVF), vertical impulses (VI), stance times (ST), and ratio of forelimb impulse to total impulse (RVI) of 54 dogs of seven different breeds were normalised to body weight and body size according to the theory of dynamic similarity, and were tested for differences between breeds. Breeds were Borzoi, Bernese Mountain dog, Great Dane, Labrador Retriever, Landseer, Rhodesian Ridgeback, and Rottweiler. Body length ratio (BLR) and body mass index (BMI) were also compared between breeds.
RESULTS:
Significant differences between breeds were found for the normalised forelimb PVF, VI and ST, and hindlimb PVF. Looking at individual breeds, it was most evident that Borzois had a lower forelimb VI, and a higher hindlimb PVF than the other breeds. This resulted in Borzois having a lower RVI compared to other dogs, indicating a more caudally located centre of gravity. Only a few differences in gait parameters were found between other dog breeds. The BMI was significantly lower in Borzois than in other breeds, but was otherwise not associated with gait parameters.
CLINICAL SIGNIFICANCE:
Force plate data of dogs of different breeds are not necessarily comparable, even after full normalisation to body weight and body size. Group comparisons should only be made when the groups consist of breeds with similar body conformation
A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype
PubMed ID: 23555276This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome
The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring
A CD21 low phenotype, with no evidence of autoantibodies to complement proteins, is consistent with a poor prognosis in CLL.
B-cell chronic lymphocytic leukemia (CLL) is characterized by differential BCR
signaling and autoimmune complications. Complement modulates B-cell function
via C3d and CD21 cross-linked to the B-cell receptor (BCR). We hypothesized that
CD21 contributes to BCR signaling and participates in the autoimmunity associated
with CLL. We analyzed CD21 expression on 106 CLL patient samples and matched
serum from 50 patients for the presence of soluble CD21 and autoantibodies to CR2,
CR1, MCP and FH. CD21 expression on CLL B-cells was significantly lower than that
expressed on B-cells from age-matched controls (P < 0.0001) and was inversely
correlated with soluble CD21 (r2 = –0.41). We found no evidence of autoantibody to
any complement regulator. Low CD21 expression correlated to prognostic subsets
of CLL patients, i.e. cases with unmutated IGHV genes (P = 0.0006), high CD38
(P = 0.02) and high ZAP70 expression (P = 0.0017). Low CD21 expression was
inversely correlated to the levels of phosphotyrosine induced in CLL cells following
BCR ligation with αIgM (r2=–0.21). Importantly, lower CD21 expression was also
predictive for reduced overall survival (P = 0.005; HR = 2.7). In conclusion, we
showed that reduced expression of CD21 on CLL B-cells appears functionally relevant
and was associated with poor clinical outcomes
Targeting malignant B cells with an immunotoxin against ROR1
The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes. A ROR1- immunotoxin (BT-1) consisting of truncated Pseudomonas exotoxin A (PE38) and the VH and VL fragments of 2A2-IgG was made recombinantly. Both 2A2-IgG and BT-1 showed dose-dependent and selective binding to primary CLL and MCL cells and MCL cell lines. Kinetic analyses revealed 0.12-nM (2A2-IgG) to 65-nM (BT-1) avidity/affinity to hROR1, depicting bivalent and monovalent interactions, respectively. After binding to cell surface ROR1, 2A2-IgG and BT-1 were partially internalized by primary CLL cells and MCL cell lines, and BT-1 induced profound apoptosis of ROR1-expressing MCL cell lines in vitro (EC50 = 16 pM–16 nM), but did not affect ROR1-negative cell lines. Our data suggest that ROR1-immunotoxins such as BT-1 could serve as targeted therapeutic agents for ROR1-expressing B cell malignancies and other cancers
The ERAD Inhibitor Eeyarestatin I Is a Bifunctional Compound with a Membrane-Binding Domain and a p97/VCP Inhibitory Group
Protein homeostasis in the endoplasmic reticulum (ER) has recently emerged as a therapeutic target for cancer treatment. Disruption of ER homeostasis results in ER stress, which is a major cause of cell death in cells exposed to the proteasome inhibitor Bortezomib, an anti-cancer drug approved for treatment of multiple myeloma and Mantle cell lymphoma. We recently reported that the ERAD inhibitor Eeyarestatin I (EerI) also disturbs ER homeostasis and has anti-cancer activities resembling that of Bortezomib.Here we developed in vitro binding and cell-based functional assays to demonstrate that a nitrofuran-containing (NFC) group in EerI is the functional domain responsible for the cytotoxicity. Using both SPR and pull down assays, we show that EerI directly binds the p97 ATPase, an essential component of the ERAD machinery, via the NFC domain. An aromatic domain in EerI, although not required for p97 interaction, can localize EerI to the ER membrane, which improves its target specificity. Substitution of the aromatic module with another benzene-containing domain that maintains membrane localization generates a structurally distinct compound that nonetheless has similar biologic activities as EerI.Our findings reveal a class of bifunctional chemical agents that can preferentially inhibit membrane-bound p97 to disrupt ER homeostasis and to induce tumor cell death. These results also suggest that the AAA ATPase p97 may be a potential drug target for cancer therapeutics
Long-term efficacy of first-line ibrutinib treatment for chronic lymphocytic leukaemia in patients with TP53 aberrations : a pooled analysis from four clinical trials
TP53 aberrations [del(17p) or TP53 mutation] predict poor survival with chemoimmunotherapy in patients with chronic lymphocytic leukaemia (CLL). We evaluated long-term efficacy and safety of first-line ibrutinib-based therapy in patients with CLL bearing TP53 aberrations in a pooled analysis across four studies: PCYC-1122e, RESONATE-2 (PCYC-1115/16), iLLUMINATE (PCYC-1130) and ECOG-ACRIN E1912. The pooled analysis included 89 patients with TP53 aberrations receiving first-line treatment with single-agent ibrutinib (n = 45) or ibrutinib in combination with an anti-CD20 antibody (n = 44). All 89 patients had del(17p) (53% of 89 patients) and/or TP53 mutation (91% of 58 patients with TP53 sequencing results available). With a median follow-up of 49·8 months (range, 0·1-95·9), median progression-free survival was not reached. Progression-free survival rate and overall survival rate estimates at four years were 79% and 88%, respectively. Overall response rate was 93%, including complete response in 39% of patients. No new safety signals were identified in this analysis. Forty-six percent of patients remained on ibrutinib treatment at last follow-up. With median follow-up of four years (up to eight years), results from this large, pooled, multi-study data set suggest promising long-term outcomes of first-line ibrutinib-based therapy in patients with TP53 aberrations. Registered at ClinicalTrials.gov (NCT01500733, NCT01722487, NCT02264574 and NCT02048813)
Profiling the Activity of the Para-Caspase MALT1 in B-Cell Acute Lymphoblastic Leukemia for Potential Targeted Therapeutic Application
B-cell acute lymphoblastic leukemia (B-ALL) remains a hard-to-treat disease with a poor prognosis in adults. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a para-caspase required for B-cell receptor (BCR)-mediated NF-κB activation. Inhibition of MALT1 in preclinical models has proven efficacious in many B-cell malignancies including chronic lymphocytic leukemia, mantle cell lymphoma and diffuse large B-cell lymphoma. We sought to examine the role of MALT1 in B-ALL and determine the biological consequences of its inhibition. Targeting MALT1 with both Z-VRPR-fmk and MI-2 efficiently kills B-ALL cells independent of the cell-of-origin (pro, pre, mature) or the presence of the Philadelphia chromosome, and spares normal B cells. The mechanism of cell death was through apoptotic induction, mostly in cycling cells. The proteolytic activity of MALT1 can be studied by measuring its ability to cleave its substrates. Surprisingly, with the exception of mature B-ALL, we did not detect cleavage of MALT1 substrates at baseline, nor after proteasomal inhibition or following activation of pre-BCR. To explore the possibility of a distinct role for MALT1 in B-ALL, independent of signaling through BCR, we studied the changes in gene expression profiling following a 24-hour treatment with MI-2 in 12 B-ALL cell lines. Our transcriptome analysis revealed a strong inhibitory effect on MYC-regulated gene signatures, further confirmed by Myc protein downregulation, concomitant with an increase in the Myc degrader FBXW7. In conclusion, our evidence suggests a novel role for MALT1 in B-ALL through Myc regulation and provides support for clinical testing of MALT1 inhibitors in B-ALL
- …
