3,666 research outputs found

    A model for the condensation of a dusty plasma

    Get PDF
    A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments.Comment: 29 pages, 4 figures, 1 table, to appear in Physics of Plasmas. Manuscript revised on May 1, 2004 to take into account accuracy of Mie scattering dust grain diameter measurement method used in Hayashi/Tachibana experiment. Model now compared to Hayashi/Tachibana experiment using measured rather than fitted dust grain diameter and using higher estimate for Te/Ti (two new references added; revisions made to two paragraphs in Sec. VII, to bottom plot of Fig. 3, and to right-most column of Table 1

    A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix

    Full text link
    In time reversal symmetric systems with half integral spins (or more concretely, systems with an antiunitary symmetry that squares to -1 and commutes with the Hamiltonian) the transmission eigenvalues of the scattering matrix come in pairs. We present a proof of this fact that is valid both for even and odd number of modes and relies solely on the antisymmetry of the scattering matrix imposed by time reversal symmetry.Comment: 2 page

    Dark matter: A spin one half fermion field with mass dimension one?

    Full text link
    We report an unexpected theoretical discovery of a spin one half matter field with mass dimension one. It is based on a complete set of eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity it belongs to a non standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate it as a first-principle candidate for dark matter.Comment: 5 pages, RevTex, v2: slightly extended discussion, new refs. and note adde

    Proof of the Ergodic Theorem and the H-Theorem in Quantum Mechanics

    Full text link
    It is shown how to resolve the apparent contradiction between the macroscopic approach of phase space and the validity of the uncertainty relations. The main notions of statistical mechanics are re-interpreted in a quantum-mechanical way, the ergodic theorem and the H-theorem are formulated and proven (without "assumptions of disorder"), followed by a discussion of the physical meaning of the mathematical conditions characterizing their domain of validity.Comment: English translation by Roderich Tumulka of J. von Neumann: Beweis des Ergodensatzes und des H-Theorems. 41 pages LaTeX, no figures; v2: typos corrected. See also the accompanying commentary by S. Goldstein, J. L. Lebowitz, R. Tumulka, N. Zanghi, arXiv:1003.212

    What is tested when experiments test that quantum dynamics is linear

    Full text link
    Experiments that look for nonlinear quantum dynamics test the fundamental premise of physics that one of two separate systems can influence the physical behavior of the other only if there is a force between them, an interaction that involves momentum and energy. The premise is tested because it is the assumption of a proof that quantum dynamics must be linear. Here variations of a familiar example are used to show how results of nonlinear dynamics in one system can depend on correlations with the other. Effects of one system on the other, influence without interaction between separate systems, not previously considered possible, would be expected with nonlinear quantum dynamics. Whether it is possible or not is subject to experimental tests together with the linearity of quantum dynamics. Concluding comments and questions consider directions our thinking might take in response to this surprising unprecedented situation.Comment: 14 pages, Title changed, sentences adde

    Wigner-Araki-Yanase theorem on Distinguishability

    Get PDF
    The presence of an additive conserved quantity imposes a limitation on the measurement process. According to the Wigner-Araki-Yanase theorem, the perfect repeatability and the distinguishability on the apparatus cannot be attained simultaneously. Instead of the repeatability, in this paper, the distinguishability on both systems is examined. We derive a trade-off inequality between the distinguishability of the final states on the system and the one on the apparatus. The inequality shows that the perfect distinguishability of both systems cannot be attained simultaneously.Comment: To be published in Phys.Rev.

    Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111)

    Full text link
    We performed mixed quantum-classical molecular dynamics simulations based on first-principles potential-energy surfaces to demonstrate that the scattering of a beam of singlet O2 molecules at Al(111) will enable an unambiguous assessment of the role of spin-selection rules for the adsorption dynamics. At thermal energies we predict a sticking probability that is substantially less than unity, with the repelled molecules exhibiting characteristic kinetic, vibrational and rotational signatures arising from the non-adiabatic spin transition.Comment: 4 pages including 3 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Continuous Spin Representations from Group Contraction

    Full text link
    We consider how the continuous spin representation (CSR) of the Poincare group in four dimensions can be generated by dimensional reduction. The analysis uses the front-form little group in five dimensions, which must yield the Euclidean group E(2), the little group of the CSR. We consider two cases, one is the single spin massless representation of the Poincare group in five dimensions, the other is the infinite component Majorana equation, which describes an infinite tower of massive states in five dimensions. In the first case, the double singular limit j,R go to infinity, with j/R fixed, where R is the Kaluza-Klein radius of the fifth dimension, and j is the spin of the particle in five dimensions, yields the CSR in four dimensions. It amounts to the Inonu-Wigner contraction, with the inverse K-K radius as contraction parameter. In the second case, the CSR appears only by taking a triple singular limit, where an internal coordinate of the Majorana theory goes to infinity, while leaving its ratio to the KK radius fixed.Comment: 22 pages; some typos correcte

    Instabilities in complex mixtures with a large number of components

    Full text link
    Inside living cells are complex mixtures of thousands of components. It is hopeless to try to characterise all the individual interactions in these mixtures. Thus, we develop a statistical approach to approximating them, and examine the conditions under which the mixtures phase separate. The approach approximates the matrix of second virial coefficients of the mixture by a random matrix, and determines the stability of the mixture from the spectrum of such random matrices.Comment: 4 pages, uses RevTeX 4.

    Nonnegative subtheories and quasiprobability representations of qubits

    Full text link
    Negativity in a quasiprobability representation is typically interpreted as an indication of nonclassical behavior. However, this does not preclude states that are non-negative from exhibiting phenomena typically associated with quantum mechanics - the single qubit stabilizer states have non-negative Wigner functions and yet play a fundamental role in many quantum information tasks. We seek to determine what other sets of quantum states and measurements for a qubit can be non-negative in a quasiprobability representation, and to identify nontrivial unitary groups that permute the states in such a set. These sets of states and measurements are analogous to the single qubit stabilizer states. We show that no quasiprobability representation of a qubit can be non-negative for more than four bases and that the non-negative bases in any quasiprobability representation must satisfy certain symmetry constraints. We provide an exhaustive list of the sets of single qubit bases that are non-negative in some quasiprobability representation and are also permuted by a nontrivial unitary group. This list includes two families of three bases that both include the single qubit stabilizer states as a special case and a family of four bases whose symmetry group is the Pauli group. For higher dimensions, we prove that there can be no more than 2^{d^2} states in non-negative bases of a d-dimensional Hilbert space in any quasiprobability representation. Furthermore, these bases must satisfy certain symmetry constraints, corresponding to requiring the bases to be sufficiently complementary to each other.Comment: 17 pages, 8 figures, comments very welcome; v2 published version. Note that the statement and proof of Theorem III.2 in the published version are incorrect (an erratum has been submitted), and this arXiv version (v2) presents the corrected theorem and proof. The conclusions of the paper are unaffected by this correctio
    corecore