751 research outputs found
Risk analysis in manufacturing footprint decisions
A key aspect in the manufacturing footprint analysis is the risk and sensitivity analysis of critical parameters. In order to contribute to efficient industrial methods and tools for making well-founded strategic decisions regarding manufacturing footprint this paper aims to describe the main risks that need to be considered while locating manufacturing activities, and what risk mitigation techniques and strategies that are proper in order to deal with these risks. It is also proposed how the risk analysis should be included in the manufacturing location decision process
Industrial waste management within manufacturing: a comparative study of tools, policies, visions and concepts
Industrial waste is a key factor when assessing the sustainability of a manufacturing process or company. A multitude of visions, concepts, tools, and policies are used both academically and industrially to improve the environmental effect of manufacturing; a majority of these approaches have a direct bearing on industrial waste. The identified approaches have in this paper been categorised according to application area, goals, organisational entity, life cycle phase, and waste hierarchy stage; the approaches have also been assessed according to academic prevalence, semantic aspects, and overlaps. In many cases the waste management approaches have similar goals and approaches, which cause confusion and disorientation for companies aiming to synthesise their management systems to fit their waste management strategy. Thus, a study was performed on how waste management approaches can be integrated to reach the vision of zero waste in manufacturing
Production localization factors: an industrial and literature based review
Decision are commonly based on the available or easily accessible information; this is also true for more complex assessments like production localization. Where to locate production is often a key strategic decisions that has great impact on a company’s profitability for a long time; insufficient business intelligence may therefore have grave consequences. Six production localization factor studies have been assessed to see if they are focusing on the same issues and if there are any gaps. A new approach for structuring localization factors and the localization process is then presented and assessed with regards to some previously identified critical issues
Supply chain risks: an automotive case study
The supply chain is a complex system exchanging information, goods, material and money within enterprises, as well as between enterprises within the value chain. An effective supply chain management contributes to large corporate profits and it is therefore a valid path to reinforce the enterprises' competitiveness. However, supply chain is exposed to influences from undesirable factors both from the outside environment and the entities in the chain. Moreover, industrial trends towards lean production, increasing outsourcing, globalisation and reliance on supply networks capabilities and innovations, increase the complexity of the supply chain . Therefore, managers need to identify, and manage risks, as well as opportunities, from a more diverse range of sources and contexts. This paper contributes to identify and categorise supply chain risks based on a literature study and an automotive manufacturer’s viewpoint. The empirical results indicate suppliers and raw material prices as the major internal and external potential risks
Formulaic Sequences as Fluency Devices in the Oral Production of Native Speakers of Polish
In this paper we attempt to determine the nature and strength of the relationship between the use of formulaic sequences and productive fluency of native speakers of Polish. In particular, we seek to validate the claim that speech characterized by a higher incidence of formulaic sequences is produced more rapidly and with fewer hesitation phenomena. The analysis is based on monologic speeches delivered by 45 speakers of L1 Polish. The data include both the recordings and their transcriptions annotated for a number of objective fluency measures. In the first part of the study the total of formulaic sequences is established for each sample. This is followed by determining a set of temporal measures of the speakers’ output (speech rate, articulation rate, mean length of runs, mean length of pauses, phonation time ratio). The study provides some preliminary evidence of the fluency-enhancing role of formulaic language. Our results show that the use of formulaic sequences is positively and significantly correlated with speech rate, mean length of runs and phonation time ratio. This suggests that a higher concentration of formulaic material in output is associated with faster speed of speech, longer stretches of speech between pauses and an increased amount of time filled with speech
An integral method for solving nonlinear eigenvalue problems
We propose a numerical method for computing all eigenvalues (and the
corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that
lie within a given contour in the complex plane. The method uses complex
integrals of the resolvent operator, applied to at least column vectors,
where is the number of eigenvalues inside the contour. The theorem of
Keldysh is employed to show that the original nonlinear eigenvalue problem
reduces to a linear eigenvalue problem of dimension .
No initial approximations of eigenvalues and eigenvectors are needed. The
method is particularly suitable for moderately large eigenvalue problems where
is much smaller than the matrix dimension. We also give an extension of the
method to the case where is larger than the matrix dimension. The
quadrature errors caused by the trapezoid sum are discussed for the case of
analytic closed contours. Using well known techniques it is shown that the
error decays exponentially with an exponent given by the product of the number
of quadrature points and the minimal distance of the eigenvalues to the
contour
Stability in quadratic variation
Consider a sequence of cadlag processes , and some fixed function
. If is continuous then under several modes of convergence
implies corresponding convergence of , due to continuous
mapping. We study conditions (on , and ) under which
convergence of implies . While
interesting in its own right, this also directly relates (through integration
by parts and the Kunita-Watanabe inequality) to convergence of integrators in
the sense . We use two
different types of quadratic variations, weak sense and strong sense which our
two main results deal with. For weak sense quadratic variations we show
stability when , are Dirichlet processes defined as in
\cite{NonCont} , and
is bounded in probability. For strong sense quadratic
variations we are able to relax the conditions on to being the primitive
function of a cadlag function but with the additional assumption on , that
the continuous and discontinuous parts of are independent stochastic
processes (this assumption is not imposed on however), and
are Dirichlet processes with quadratic variations along any
stopping time refining sequence. To prove the result regarding strong sense
quadratic variation we prove a new It\^o decomposition for this setting
- …
