317 research outputs found
Recommended from our members
Modeling Coulombic failure of sea ice with leads
[1] Sea ice failure under low-confinement compression is modeled with a linear Coulombic criterion that can describe either fractural failure or frictional granular yield along slip lines. To study the effect of anisotropy we consider a simplified anisotropic sea ice model where the sea ice thickness depends on orientation. Accommodation of arbitrary deformation requires failure along at least two intersecting slip lines, which are determined by finding two maxima of the yield criterion. Due to the anisotropy these slip lines generally differ from the standard, Coulombic slip lines that are symmetrically positioned around the compression direction, and therefore different tractions along these slip lines give rise to a nonsymmetric stress tensor. We assume that the skewsymmetric part of this tensor is counterbalanced by an additional elastic stress in the sea ice field that suppresses floe spin. We consider the case of two leads initially formed in an isotropic ice cover under compression, and address the question of whether these leads will remain active or new slip lines will form under a rotation of the principal compression direction. Decoupled and coupled models of leads are considered and it is shown that for this particular case they both predict lead reactivation in almost the same way. The coupled model must, however, be used in determining the stress as the decoupled model does not resolve the stress asymmetry properly when failure occurs in one lead and at a new slip line
Recommended from our members
Impact of a new anisotropic rheology on simulations of Arctic sea ice
new rheology that explicitly accounts for the subcontinuum anisotropy of the sea ice cover is implemented into the Los Alamos sea ice model. This is in contrast to all models of sea ice included in global circulation models that use an isotropic rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. The anisotropic rheology provides a subcontinuum description of the mechanical behavior of sea ice and accounts for a continuum scale stress with large shear to compression ratio and tensile stress component. Results over the Arctic of a stand-alone version of the model are presented and anisotropic model sensitivity runs are compared with a reference elasto-visco-plastic simulation. Under realistic forcing sea ice quickly becomes highly anisotropic over large length scales, as is observed from satellite imagery. The influence of the new rheology on the state and dynamics of the sea ice cover is discussed. Our reference anisotropic run reveals that the new rheology leads to a substantial change of the spatial distribution of ice thickness and ice drift relative to the reference standard visco-plastic isotropic run, with ice thickness regionally increased by more than 1 m, and ice speed reduced by up to 50%
Recommended from our members
Continuum sea ice rheology determined from subcontinuum mechanics
[1] A method is presented to calculate the continuum-scale sea ice stress as an imposed, continuum-scale strain-rate is varied. The continuum-scale stress is calculated as the area-average of the stresses within the floes and leads in a region (the continuum element). The continuum-scale stress depends upon: the imposed strain rate; the subcontinuum scale, material rheology of sea ice; the chosen configuration of sea ice floes and leads; and a prescribed rule for determining the motion of the floes in response to the continuum-scale strain-rate. We calculated plastic yield curves and flow rules associated with subcontinuum scale, material sea ice rheologies with elliptic, linear and modified Coulombic elliptic plastic yield curves, and with square, diamond and irregular, convex polygon-shaped floes. For the case of a tiling of square floes, only for particular orientations of the leads have the principal axes of strain rate and calculated continuum-scale sea ice stress aligned, and these have been investigated analytically. The ensemble average of calculated sea ice stress for square floes with uniform orientation with respect to the principal axes of strain rate yielded alignment of average stress and strain-rate principal axes and an isotropic, continuum-scale sea ice rheology. We present a lemon-shaped yield curve with normal flow rule, derived from ensemble averages of sea ice stress, suitable for direct inclusion into the current generation of sea ice models. This continuum-scale sea ice rheology directly relates the size (strength) of the continuum-scale yield curve to the material compressive strength
Recommended from our members
The effect of a new drag-law parameterization on ice shelf water plume dynamics
A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou
ndary is proposed for use in
a plume model that is written in terms of the depth-mean velocity. The drag l
aw contains a variable turning
angle between the mean velocity and the drag imposed by the turbulent bound
ary layer. The effect of the
variable turning angle in the drag law is studied for a plume of ice shelf wat
er (ISW) ascending and turning
beneath an Antarctic ice shelf with draft decreasing away from the groundi
ng line. As the ISW plume
ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh
ich alters the buoyancy forcing
driving the plume motion. Under these conditions, the typical turning ang
le is of order
10° over most of
the plume area for a range of drag coefficients (the minus sign arises for th
e Southern Hemisphere). The
rotation of the drag with respect to the mean velocity is found to be signifi
cant if the drag coefficient exceeds
0.003; in this case the plume body propagates farther along and across the b
ase of the ice shelf than a plume
with the standard quadratic drag law with no turning angle
Recommended from our members
Rheology of discrete failure regimes of anisotropic sea ice
A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the orientational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case, sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude. Although generally a given failure criteria type can be satisfied at many directions, only two at most are considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads of different thicknesses rotated with regard to each other, which models two events of coulombic failure followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event produces enough open water that these freshly formed slip lines are preferential places of ridging failure
The inertial dynamics of thin film flow of non-Newtonian fluids
Consider the flow of a thin layer of non-Newtonian fluid over a solid
surface. I model the case of a viscosity that depends nonlinearly on the
shear-rate; power law fluids are an important example, but the analysis here is
for general nonlinear dependence. The modelling allows for large changes in
film thickness provided the changes occur over a large enough lateral length
scale. Modifying the surface boundary condition for tangential stress forms an
accessible base for the analysis where flow with constant shear is a neutral
critical mode, in addition to a mode representing conservation of fluid.
Perturbatively removing the modification then constructs a model for the
coupled dynamics of the fluid depth and the lateral momentum. For example, the
results model the dynamics of gravity currents of non-Newtonian fluids even
when the flow is not very slow
Recommended from our members
Study of the impact of ice formation in leads upon the sea ice pack mass balance using a new frazil and grease ice parameterisation
Leads are cracks in sea ice that often form due to deformation. During winter months leads expose the ocean to the cold atmosphere resulting in supercooling and the formation of frazil ice crystals within the mixed layer. Here we investigate the role of frazil ice formation in leads on the mass balance of the sea ice pack through the incorporation of a new module into the Los Alamos sea ice model (CICE). The frazil ice module considers a initial cooling of leads followed by a steady state formation of uniformly distributed single size frazil ice crystals that precipitate to the ocean surface as grease ice. The grease ice is pushed against one of the lead edges by wind and water drag that we represent through a variable collection thickness for new sea ice. Simulations of the sea ice cover in the Arctic and Antarctic are performed and compared to a model that treats leads the same as the open ocean.
The processes of ice formation in the new module slows down the refreezing of leads resulting in an longer period of frazil ice production. The fraction of frazil-derived sea ice increases from 10% to 50%, corresponding better to observations. The new module has higher ice formation rates in areas of high ice concentration and thus has a greater impact within multiyear ice than it does in the marginal seas. The thickness of sea ice in the central Arctic increases by over 0.5 m whereas within the Antarctic it remains unchanged
Recommended from our members
Dependence of sea ice yield-curve shape on ice thickness
In this note, the authors discuss the contribution that frictional sliding of ice floes (or floe aggregates) past
each other and pressure ridging make to the plastic yield curve of sea ice. Using results from a previous study
that explicitly modeled the amount of sliding and ridging that occurs for a given global strain rate, it is noted
that the relative contribution of sliding and ridging to ice stress depends upon ice thickness. The implication is
that the shape and size of the plastic yield curve is dependent upon ice thickness. The yield-curve shape
dependence is in addition to plastic hardening/weakening that relates the size of the yield curve to ice thickness.
In most sea ice dynamics models the yield-curve shape is taken to be independent of ice thickness. The authors
show that the change of the yield curve due to a change in the ice thickness can be taken into account by a
weighted sum of two thickness-independent rheologies describing ridging and sliding effects separately. It would
be straightforward to implement the thickness-dependent yield-curve shape described here into sea ice models
used for global or regional ice prediction
Recommended from our members
Improving the spatial distribution of modeled Arctic sea ice thickness
The spatial distribution of ice thickness/draft in the Arctic Ocean is examined using a sea ice model. A comparison of model predictions with submarine observations of sea ice draft made during cruises between 1987 and 1997 reveals that the model has the same deficiencies found in previous studies, namely ice that is too thick in the Beaufort Sea and too thin near the North Pole. We find that increasing the large scale shear strength of the sea ice leads to substantial improvements in the model's spatial distribution of sea ice thickness, and simultaneously improves the agreement between modeled and ERS-derived 1993–2001 mean winter ice thickness
Recommended from our members
A multithickness sea ice model accounting for sliding friction
A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea ice model code and is shown to improve agreement between model predictions and observed spatial distribution of sea ice thickness in the Arctic
- …
