11,554 research outputs found
Clouds, photolysis and regional tropospheric ozone budgets.
We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales
Adiabatic Quantum Search in Open Systems
Adiabatic quantum algorithms represent a promising approach to universal
quantum computation. Whilst in a closed system these algorithms are limited by
avoided level crossings, where the gap becomes exponentially small in the
system size, their robustness in open systems remains unresolved. We study the
dynamics in the proximity of such an avoided level crossing associated with the
adiabatic quantum search algorithm in a quantum system that is coupled to a
generic environment. At zero temperature, we find that the algorithm remains
scalable provided the noise spectral density of the environment decays
sufficiently fast at low frequencies. At finite temperature, however,
scattering processes render the algorithm inefficient and no quantum speedup
can be achieved. Owing to the generic nature of our model, we expect our
results to be widely applicable to other adiabatic quantum algorithms.Comment: Accepted version. 6 pages, 2 figures, 10 pages supplemental material
Issues of partial credit in mathematical assessment by computer
The CALM Project for Computer Aided Learning in Mathematics has operated at Heriot‐Watt University since 1985. From the beginning CALM has featured assessment in its programs (Beevers, Cherry, Foster and McGuire, 1991), and enabled both students and teachers to view progress in formative assessment The computer can play a role in at least four types of assessment: diagnostic, self‐test, continuous and grading assessment. The TLTP project Mathwise employs the computer in three of these roles. In 1994 CALM reported on an educational experiment in which the computer was used for the first time to grade, in part, the learning of a large class of service mathematics students (Beevers, McGuire, Stirling and Wild ,1995), using the Mathwise assessment template. At that time the main issues identified were those of ‘partial credit’ and communication between the student and the computer. These educational points were addressed in the next phase of the CALM Project in which the commercial testing program Interactive PastPapers was developed. The main aim of this paper is to describe how Interactive Past Papers has been able to incorporate some approaches to partial credit which has helped to alleviate student worries on these issues. Background information on other features in Interactive Past Papers is also included to provide context for the discussion
Dynamical Hartree-Fock-Bogoliubov Theory of Vortices in Bose-Einstein Condensates at Finite Temperature
We present a method utilizing the continuity equation for the condensate
density to make predictions of the precessional frequency of single off-axis
vortices and of vortex arrays in Bose-Einstein condensates at finite
temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB)
formalism. We solve the continuity equation for the condensate density
self-consistently with the orthogonalized HFB equations, and find stationary
solutions in the frame rotating at this frequency. As an example of the utility
of this formalism we obtain time-independent solutions for
quasi-two-dimensional rotating systems in the co-rotating frame. We compare
these results with time-dependent predictions where we simulate stirring of the
condensate.Comment: 13 pages, 11 figures, 1 tabl
Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds
We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies
- …
