1,163 research outputs found
Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 2. Field Deployment
In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water
On the role of the Knudsen layer in rapid granular flows
A combination of molecular-dynamics simulations, theoretical predictions, and
previous experiments are used in a two-part study to determine the role of the
Knudsen layer in rapid granular flows. First, a robust criterion for the
identification of the thickness of the Knudsen layer is established: a rapid
deterioration in Navier-Stokes-order prediction of the heat flux is found to
occur in the Knudsen layer. For (experimental) systems in which heat flux
measurements are not easily obtained, a rule-of-thumb for estimating the
Knudsen layer thickness follows, namely that such effects are evident within
2.5 (local) mean free paths of a given boundary. Second, comparisons of
simulation and experimental data with Navier-Stokes order theory are used to
provide a measure as to when Knudsen layer effects become non-negligible.
Specifically, predictions that do not account for the presence of a Knudsen
layer appear reliable for Knudsen layers collectively composing up to 20% of
the domain, whereas deterioration of such predictions becomes apparent when the
domain is fully comprised of the Knudsen layer.Comment: 9 figures, accepted to Journal of Fluid Mechanic
An integrated study of earth resources in the State of California based on ERTS-1 and supporting aircraft data
There are no author-identified significant results in this report
Studies of Mass and Size Effects in Three-Dimensional Vibrofluidized Granular Mixtures
We examine the steady state properties of binary systems of driven inelastic
hard spheres. The spheres, which move under the influence of gravity, are
contained in a vertical cylinder with a vibrating base. We computed the
trajectories of the spheres using an event-driven molecular dynamics algorithm.
In the first part of the study, we chose simulation parameters that match those
of experiments performed by Wildman and Parker. Various properties computed
from the simulation including the density profile, granular temperature and
circulation pattern are in good qualitative agreement with the experiments. We
then studied the effect of varying the mass ratio and the size ratio
independently while holding the other parameters constant. The mass and size
ratio are shown to affect the distribution of the energy. The changes in the
energy distributions affect the packing fraction and temperature of each
component. The temperature of the heavier component has a non-linear dependence
on the mass of the lighter component, while the temperature of the lighter
component is approximately proportional to its mass. The temperature of both
components is inversely dependent on the size of the smaller component.Comment: 14 Pages, 12 Figures, RevTeX
Close-packed floating clusters: granular hydrodynamics beyond the freezing point?
Monodisperse granular flows often develop regions with hexagonal close
packing of particles. We investigate this effect in a system of inelastic hard
spheres driven from below by a "thermal" plate. Molecular dynamics simulations
show, in a wide range of parameters, a close-packed cluster supported by a
low-density region. Surprisingly, the steady-state density profile, including
the close-packed cluster part, is well described by a variant of Navier-Stokes
granular hydrodynamics (NSGH). We suggest a simple explanation for the success
of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let
NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium
A three-dimensional granular system fluidized by vertical container
vibrations was studied using pulsed field gradient (PFG) NMR coupled with
one-dimensional magnetic resonance imaging (MRI). The system consisted of
mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4
was sufficiently low to achieve a nearly time-independent granular fluid. Using
NMR, the vertical profiles of density and granular temperature were directly
measured, along with the distributions of vertical and horizontal grain
velocities. The velocity distributions showed modest deviations from
Maxwell-Boltzmann statistics, except for the vertical velocity distribution
near the sample bottom which was highly skewed and non-Gaussian. Data taken for
three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit
to a hydrodynamic theory, which successfully models the density and temperature
profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure
Non-Gaussian Velocity Distribution Function in a Vibrating Granular Bed
The simulation of granular particles in a quasi two-dimensional container
under the vertical vibration as an experimental accessible model for granular
gases is performed. The velocity distribution function obeys an
exponential-like function during the vibration and deviates from the
exponential function in free-cooling states. It is confirmed that this
exponential-like distribution function is produced by Coulomb's friction force.
A Langevin equation with Coulomb's friction is proposed to describe the motion
of such the system.Comment: 4 pages, 4 figures. to be published in Journal of Physical Society of
Japan Vol.73 No.
Mental Health of Parents and Life Satisfaction of Children: A Within-Family Analysis of Intergenerational Transmission of Well-Being
This paper addresses the extent to which there is an intergenerational transmission of mental health and subjective well-being within families. Specifically it asks whether parents’ own mental distress influences their child’s life satisfaction, and vice versa. Whilst the evidence on daily contagion of stress and strain between members of the same family is substantial, the evidence on the transmission between parental distress and children’s well-being over a longer period of time is sparse. We tested this idea by examining the within-family transmission of mental distress from parent to child’s life satisfaction, and vice versa, using rich longitudinal data on 1,175 British youths. Results show that parental distress at year t-1 is an important determinant of child’s life satisfaction in the current year. This is true for boys and girls, although boys do not appear to be affected by maternal distress levels. The results also indicated that the child’s own life satisfaction is related with their father’s distress levels in the following year, regardless of the gender of the child. Finally, we examined whether the underlying transmission correlation is due to shared social environment, empathic reactions, or transmission via parent-child interaction
- …
