336 research outputs found

    Pharmacokinetic studies in children: recommendations for practice and research.

    Get PDF
    Optimising the dosing of medicines for neonates and children remains a challenge. The importance of pharmacokinetic (PK) and pharmacodynamic (PD) research is recognised both in medicines regulation and paediatric clinical pharmacology, yet there remain barriers to undertaking high-quality PK and PD studies. While these studies are essential in understanding the dose-concentration-effect relationship and should underpin dosing recommendations, this review examines how challenges affecting the design and conduct of paediatric pharmacological studies can be overcome using targeted pharmacometric strategies. Model-based approaches confer benefits at all stages of the drug life-cycle, from identifying the first dose to be used in children, to clinical trial design, and optimising the dosing regimens of older, off-patent medications. To benefit patients, strategies to ensure that new PK, PD and trial data are incorporated into evidence-based dosing recommendations are needed. This review summarises practical strategies to address current challenges, particularly the use of model-based (pharmacometric) approaches in study design and analysis. Recommendations for practice and directions for future paediatric pharmacological research are given, based on current literature and our joint international experience. Success of PK research in children requires a robust infrastructure, with sustainable funding mechanisms at its core, supported by political and regulatory initiatives, and international collaborations. There is a unique opportunity to advance paediatric medicines research at an unprecedented pace, bringing the age of evidence-based paediatric pharmacotherapy into sight

    Ontogeny of midazolam glucuronidation in preterm infants

    Get PDF
    Purpose: In preterm infants, the biotransformation of midazolam (M) to 1-OH-midazolam (OHM) by cytochrome P450 3A4 (CYP3A4) is developmentally immature, but it is currently unknown whether the glucuronidation of OHM to 1-OH-midazolam glucuronide (OHMG) is also decreased. The aim of our study was to investigate the urinary excretion of midazolam and its metabolites OHM and OHMG in preterm neonates following the intravenous (IV) or oral (PO) administration of a single M dose. Methods: Preterm infants (post-natal age 3-13 days, gestational age 26-34 4/7 weeks) scheduled to undergo a stressful procedure received a 30-min IV infusion (n=15) or a PO bolus dose (n=7) of 0.1 mg/kg midazolam. The percentage of midazolam dose excreted in the urine as M, OHM and OHMG up to 6 h post-dose was determined. Results: The median percentage of the midazolam dose excreted as M, OHM and OHMG in the urine during the 6-h interval after the IV infusion was 0.44% (range 0.02-1.39%), 0.04% (0.01-0.13%) and 1.57% (0.36-7.7%), respectively. After administration of the PO bolus dose, the median percentage of M, OHM and OHMG excreted in the urine was 0.11% (0.02-0.59%), 0.02% (0.00-0.10%) and 1.69% (0.58-7.31%), respectively. The proportion of the IV midazolam dose excreted as OHMG increased significantly with postconceptional age (r=0.73, p <0.05). Conclusion: The glucuronidation of OHM appears immature in preterm infants less than 2 weeks of age. The observed increase in urinary excretion of OHMG with postconceptional age likely reflects the combined maturation of glucuronidation and renal function

    Willingness-to-use and preferences for model-informed antenatal doses: a cross-sectional study among European healthcare practitioners and pregnant women

    Get PDF
    Background: Physiological changes in pregnancy may affect drug safety and efficacy, sometimes requiring dose adjustments. Pregnancy-adjusted doses, however, are missing for most medications. Increasingly, pharmacokinetic models can be used for antenatal dose finding. Given the novelty of this technique and questions regarding dose credibility, the acceptability of model-informed antenatal doses should be explored. // Objective: We aimed to assess the willingness-to-use and preferred features for model-informed antenatal doses among healthcare practitioners (HCPs) and pregnant women in European countries. // Methods: A cross-sectional, web-based study drawing on two open surveys was performed between 8 September and 30 November 2022. Each survey comprised statements drawn from prior focus groups, associated with Likert-scales. Themes included respondents’ information needs, search behaviours along with their willingness-to-use and preferred features for model-informed antenatal doses. The surveys were disseminated through professional societies, pregnancy websites and social media. A descriptive analysis was performed. // Results: In total, 608 HCPs from different specialties and 794 pregnant women across 15 countries participated, with 81% of respondents across both groups in the Netherlands or Belgium. Among pregnant women, 31% were medical professionals and 85% used medication during pregnancy. Eighty-three percent of HCPs found current antenatal pharmacotherapy suboptimal and 97% believed that model-informed antenatal doses would enhance the quality of antenatal care. Most HCPs (93%) and pregnant women (75%) would be willing to follow model-informed antenatal doses. Most HCPs desired access to the evidence (88%), including from pharmacokinetic modelling (62%). Most pregnant women (96%) wanted to understand antenatal dosing rationales and to be involved in dosing decisions (97%). // Conclusion: The willingness-to-use model-informed antenatal doses is high among HCPs and pregnant women provided that certain information needs are met

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Photodynamic therapy of early stage oral cavity and oropharynx neoplasms: an outcome analysis of 170 patients

    Get PDF
    The indications of photodynamic therapy (PDT) of oral cavity and oropharynx neoplasms are not well defined. The main reason is that the success rates are not well established. The current paper analyzes our institutional experience of early stage oral cavity and oropharynx neoplasms (Tis-T2) to identify the success rates for each subgroup according to T stage, primary or non-primary treatment and subsites. In total, 170 patients with 226 lesions are treated with PDT. From these lesions, 95 are primary neoplasms, 131 were non-primaries (recurrences and multiple primaries). The overall response rate is 90.7% with a complete response rate of 70.8%. Subgroup analysis identified oral tongue, floor of mouth sites with more favorable outcome. PDT has more favorable results with certain subsites and with previously untreated lesions. However, PDT can find its place for treating lesions in previously treated areas with acceptable results

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Pharmacokinetics of lopinavir/ritonavir in second-line treatment of children living with HIV in the CHAPAS-4 trial

    Get PDF
    Objective: Lopinavir/ritonavir (LPV/r) remains a much-used drug combination for treatment of children with HIV, but pharmacokinetic data when the adult formulation (LPV/r 200/50mg) is used for children weighing 25-34.9kg, or when combined with tenofovir alafenamide/emtricitabine (TAF/FTC), is currently lacking. Design: We aim to provide this data by an intensive LPV/r pharmacokinetic sub-study nested within the CHAPAS-4 trial (#ISRCTN22964075). Methods: Children (3-15years), weighing 14-24.9kg received 200/50mg LPV/r orally twice daily; those weighing 25-34.9kg received 400/100mg LPV/r in the morning and 200/50mg in the evening; and those weighing ≥35kg received 400/100mg LPV/r twice daily. LPV/r was used in combination with either TAF/FTC or standard-of-care backbone (abacavir/lamivudine or zidovudine/lamivudine). Pharmacokinetic parameters were compared to those reported in children receiving WHO-recommended dosages. Results: We enrolled 40 children from Uganda, Zambia and Zimbabwe. The geometric mean (GM) area under the concentration-time curve (AUC0-12h) for LPV was 116.2h∗mg/L (coefficient of variation [CV%], 37%), comparable to children receiving WHO-recommended dosages. The GM trough concentration was 7.7mg/L (52%), 57% higher than the reference value of 4.9mg/L (95% confidence interval, 4.14-5.80), mainly caused by higher exposure in children 25-34.9kg. There were no differences in LPV AUC0-12hor Ctroughbetween backbones. Conclusions Children (3-15years), weighing ≥14kg and taking LPV/r in second-line treatment achieve adequate exposure of LPV within limits reported to be safe and well tolerated. These data support the use of a LPV/r based regimen and the adult formulation of 200/50mg in children 25-34.9kg
    corecore