994 research outputs found
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Report of the task force on pre‐graduate education in Europe of the Education Committee of the European Federation of Neurological Societies.
Real measurements and Quantum Zeno effect
In 1977, Mishra and Sudarshan showed that an unstable particle would never be
found decayed while it was continuously observed. They called this effect the
quantum Zeno effect (or paradox). Later it was realized that the frequent
measurements could also accelerate the decay (quantum anti-Zeno effect). In
this paper we investigate the quantum Zeno effect using the definite model of
the measurement. We take into account the finite duration and the finite
accuracy of the measurement. A general equation for the jump probability during
the measurement is derived. We find that the measurements can cause inhibition
(quantum Zeno effect) or acceleration (quantum anti-Zeno effect) of the
evolution, depending on the strength of the interaction with the measuring
device and on the properties of the system. However, the evolution cannot be
fully stopped.Comment: 3 figure
Cosmological parameter estimation using Very Small Array data out to ℓ= 1500
We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other cosmic microwave background (CMB) data and external priors. Within the flat Λ cold dark matter (ΛCDM) model, we find that the inclusion of high-resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by the Wilkinson Microwave Anisotropy Probe (WMAP) alone, while still remaining compatible with their estimates. We find that Ωbh2= 0.0234+0.0012−0.0014, Ωdmh2= 0.111+0.014−0.016, h= 0.73+0.09−0.05, nS= 0.97+0.06−0.03, 1010AS= 23+7−3 and τ= 0.14+0.14−0.07 for WMAP and VSA when no external prior is included. On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95 per cent confidence ( nrun=−0.069 ± 0.032 ), something that is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fν < 0.087 at 95 per cent confidence, which corresponds to mν < 0.32 eV when all neutrino masses are equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun < 0 is only marginal within this model
Influence of the detector's temperature on the quantum Zeno effect
In this paper we study the quantum Zeno effect using the irreversible model
of the measurement. The detector is modeled as a harmonic oscillator
interacting with the environment. The oscillator is subjected to the force,
proportional to the energy of the measured system. We use the Lindblad-type
master equation to model the interaction with the environment. The influence of
the detector's temperature on the quantum Zeno effect is obtained. It is shown
that the quantum Zeno effect becomes stronger (the jump probability decreases)
when the detector's temperature increases
Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory
We investigate the possibility of assigning consistent probabilities to sets
of histories characterized by whether they enter a particular subspace of the
Hilbert space of a closed system during a given time interval. In particular we
investigate the case that this subspace is a region of the configuration space.
This corresponds to a particular class of coarse grainings of spacetime
regions. We consider the arrival time problem and the problem of time in
reparametrization invariant theories as for example in canonical quantum
gravity. Decoherence conditions and probabilities for those application are
derived. The resulting decoherence condition does not depend on the explicit
form of the restricted propagator that was problematic for generalizations such
as application in quantum cosmology. Closely related is the problem of
tunnelling time as well as the quantum Zeno effect. Some interpretational
comments conclude, and we discuss the applicability of this formalism to deal
with the arrival time problem.Comment: 23 pages, Few changes and added references in v
Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots
We show that the parametric correlations of the conductance peak amplitudes
of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime
become universal upon an appropriate scaling of the parameter. We compute the
universal forms of this correlator for both cases of conserved and broken time
reversal symmetry. For a symmetric dot the correlator is independent of the
details in each lead such as the number of channels and their correlation. We
derive a new scaling, which we call the rotation scaling, that can be computed
directly from the dot's eigenfunction rotation rate or alternatively from the
conductance peak heights, and therefore does not require knowledge of the
spectrum of the dot. The relation of the rotation scaling to the level velocity
scaling is discussed. The exact analytic form of the conductance peak
correlator is derived at short distances. We also calculate the universal
distributions of the average level width velocity for various values of the
scaled parameter. The universality is illustrated in an Anderson model of a
disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
Indirect search for dark matter: prospects for GLAST
Possible indirect detection of neutralino, through its gamma-ray annihilation
product, by the forthcoming GLAST satellite from our galactic halo, M31, M87
and the dwarf galaxies Draco and Sagittarius is studied. Gamma-ray fluxes are
evaluated for the two representative energy thresholds, 0.1 GeV and 1.0 GeV, at
which the spatial resolution of GLAST varies considerably. Apart from dwarfs
which are described either by a modified Plummer profile or by a
tidally-truncated King profiles, fluxes are compared for halos with central
cusps and cores. It is demonstrated that substructures, irrespective of their
profiles, enhance the gamma-ray emission only marginally. The expected
gamma-ray intensity above 1 GeV at high galactic latitudes is consistent with
the residual emission derived from EGRET data if the density profile has a
central core and the neutralino mass is less than 50 GeV, whereas for a central
cusp only a substantial enhancement would explain the observations. From M31,
the flux can be detected above 0.1 GeV and 1.0 GeV by GLAST only if the
neutralino mass is below 300 GeV and if the density profile has a central cusp,
case in which a significant boost in the gamma-ray emission is produced by the
central black hole. For Sagittarius, the flux above 0.1 GeV is detectable by
GLAST provided the neutralino mass is below 50 GeV. From M87 and Draco the
fluxes are always below the sensitivity limit of GLAST.Comment: 14 Pages, 7 Figures, 3 Tables, version to appear on Physical Review
Luminescence dating of sediment mounds: associated with shaft and gallery irrigation systems
Optically stimulated luminescence (OSL) techniques, supported by geomorphological analysis, have been applied to date the construction of shaft and gallery irrigation systems, more commonly referred to as qanats, falaj and foggara. The approach developed was tested on four hydraulic systems located in semi-arid landscape settings, three in Murcia, Spain, and the fourth in the Sus Tekna region, Morocco. Excavation of the characteristic sediment mounds that surround each ventilation shaft enabled a detailed examination of strata containing upcast deposits and their assignment to the main stages in the construction and use of the hydraulic feature. OSL techniques with single grain resolution applied to samples taken from the key strata provided age estimates for their deposition on the mound and, from these, dating of the construction and use of the system. Of the four irrigation systems analysed, the OSL dates indicated that the youngest had been constructed in the 19th century AD and the oldest, located in Murcia, was dated to the Roman period. The latter is of archaeological significance because the introduction of this particular form of hydraulic technology to Spain is widely identified as an Islamic innovation of the early 8th century AD
Tunneling of quantum rotobreathers
We analyze the quantum properties of a system consisting of two nonlinearly
coupled pendula. This non-integrable system exhibits two different symmetries:
a permutational symmetry (permutation of the pendula) and another one related
to the reversal of the total momentum of the system. Each of these symmetries
is responsible for the existence of two kinds of quasi-degenerated states. At
sufficiently high energy, pairs of symmetry-related states glue together to
form quadruplets. We show that, starting from the anti-continuous limit,
particular quadruplets allow us to construct quantum states whose properties
are very similar to those of classical rotobreathers. By diagonalizing
numerically the quantum Hamiltonian, we investigate their properties and show
that such states are able to store the main part of the total energy on one of
the pendula. Contrary to the classical situation, the coupling between pendula
necessarily introduces a periodic exchange of energy between them with a
frequency which is proportional to the energy splitting between
quasi-degenerated states related to the permutation symmetry. This splitting
may remain very small as the coupling strength increases and is a decreasing
function of the pair energy. The energy may be therefore stored in one pendulum
during a time period very long as compared to the inverse of the internal
rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl
- …
