1,198 research outputs found
Phylogenetic relationships of African Caecilians (Amphibia: Gymnophiona): insights from mitochondrial rRNA gene sequences
Africa (excluding the Seychelles) has a diverse caecilian fauna, including the endemic family Scolecomorphidae and six endemic genera of the more cosmopolitan Caeciliidae. Previous molecular phylogenetic studies have not included any caecilians from the African mainland. Partial 12S and 16S mitochondrial gene sequences were obtained for two species of the endemic African Scolecomorphidae and five species and four genera of African Caeciliids, aligned against previously reported sequences for 16 caecilian species, and analysed using parsimony, maximum likelihood, Bayesian and distance methods. Results are in agreement with traditional taxonomy in providing support for the monophyly of the African Caeciliid genera Boulengerula and Schistometopum and for the Scolecomorphidae. They disagree in indicating that the Caeciliidae is paraphyletic with respect to the Scolecomorphidae. Although more data from morphology and/or molecules will be required to resolve details of the interrelationships of the African caecilian genera, the data provide strong support for at least two origins of caecilians in which the eye is reduced and covered with bone, and do not support the hypotheses that the caecilian assemblages of Africa, and of East and of West Africa are monophyletic
Quantum correction to the Kubo formula in closed mesoscopic systems
We study the energy dissipation rate in a mesoscopic system described by the
parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of
linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel
transitions leading to energy pumping, and also smears the discrete spectrum of
the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the
mean level spacing and the dissipation rate is given by the Kubo formula. We
calculate the quantum correction to the Kubo result that reveals the original
discreteness of the energy spectrum. The first correction to the system
viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes
in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX
Conductance Peak Height Correlations for a Coulomb-Blockaded Quantum Dot in a Weak Magnetic Field
We consider statistical correlations between the heights of conductance peaks
corresponding to two different levels in a Coulomb-blockaded quantum dot.
Correlations exist for two peaks at the same magnetic field if the field does
not fully break time-reversal symmetry as well as for peaks at different values
of a magnetic field that fully breaks time-reversal symmetry. Our results are
also relevant to Coulomb-blockade conductance peak height statistics in the
presence of weak spin-orbit coupling in a chaotic quantum dot.Comment: 5 pages, 3 figures, REVTeX 4, accepted for publication in Phys. Rev.
Atl1 Regulates Choice between Global Genome and Transcription-Coupled Repair of O6-Alkylguanines
Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O6-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O6-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O6-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER
Probing the energy bands of a Bose-Einstein condensate in an optical lattice
We simulate three experimental methods which could be realized in the
laboratory to probe the band excitation energies and the momentum distribution
of a Bose-Einstein condensate inside an optical lattice. The values of the
excitation energies obtained in these different methods agree within the
accuracy of the simulation. The meaning of the results in terms of density and
phase deformations is tested by studying the relaxation of a phase-modulated
condensate towards the ground state.Comment: 5 pages, 5 figure
Comparison of exact and approximate cross-sections in relativistic Coulomb excitation
We present a new method of obtaining time-dependent matrix elements of the
electromagnetic pulse produced by a highly-relativistic projectile. These
matrix elements are used in a coupled-channel calculation to predict the
cross-sections for population of 1- and 2-phonon states of the giant dipole
resonance. Comparisons are made with the predictions of the long-wavelength and
Born approximations.Comment: 26 pages, LaTex2
Accretion and ejection in black-hole X-ray transients
Aims: We summarize the current observational picture of the outbursts of
black-hole X-ray transients (BHTs), based on the evolution traced in a
hardness-luminosity diagram (HLD), and we offer a physical interpretation.
Methods: The basic ingredient in our interpretation is the Poynting-Robertson
Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the
poloidal magnetic field needed for the ejection of the jet. In addition, we
make two assumptions, easily justifiable. The first is that the mass-accretion
rate to the black hole in a BHT outburst has a generic bell-shaped form. This
is guaranteed by the observational fact that all BHTs start their outburst and
end it at the quiescent state. The second assumption is that at low accretion
rates the accretion flow is geometrically thick, ADAF-like, while at high
accretion rates it is geometrically thin.
Results: Both, at the beginning and the end of an outburst, the PRCB
establishes a strong poloidal magnetic field in the ADAF-like part of the
accretion flow, and this explains naturally why a jet is always present in the
right part of the HLD. In the left part of the HLD, the accretion flow is in
the form of a thin disk, and such a disk cannot sustain a strong poloidal
magnetic filed. Thus, no jet is expected in this part of the HLD. The
counterclockwise traversal of the HLD is explained as follows: the poloidal
magnetic field in the ADAF forces the flow to remain ADAF and the source to
move upwards in the HLD rather than to turn left. Thus, the history of the
system determines the counterclockwise traversal of the HLD. As a result, no
BHT is expected to ever traverse the entire HLD curve in the clockwise
direction.
Conclusions: We offer a physical interpretation of accretion and ejection in
BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
- …
