9,345 research outputs found
Finally, results from Gravity Probe-B
Nearly fifty years after its inception, the Gravity Probe B satellite mission
delivers the first measurements of how a spinning gyroscope precesses in the
gravitational warping of spacetime.Comment: A Viewpoint article, published in Physics 4, 43 (2011), available at
http://physics.aps.org/articles/v4/43 Submitted to the arXiv by permission of
the American Physical Societ
Constraining Lorentz-violating, Modified Dispersion Relations with Gravitational Waves
Modified gravity theories generically predict a violation of Lorentz
invariance, which may lead to a modified dispersion relation for propagating
modes of gravitational waves. We construct a parametrized dispersion relation
that can reproduce a range of known Lorentz-violating predictions and
investigate their impact on the propagation of gravitational waves. A modified
dispersion relation forces different wavelengths of the gravitational wave
train to travel at slightly different velocities, leading to a modified phase
evolution observed at a gravitational-wave detector. We show how such
corrections map to the waveform observable and to the parametrized
post-Einsteinian framework, proposed to model a range of deviations from
General Relativity. Given a gravitational-wave detection, the lack of evidence
for such corrections could then be used to place a constraint on Lorentz
violation. The constraints we obtain are tightest for dispersion relations that
scale with small power of the graviton's momentum and deteriorate for a steeper
scaling.Comment: 11 pages, 3 figures, 2 tables: title changed slightly, published
versio
Exploring the bulk of tidal charged micro-black holes
We study the bulk corresponding to tidal charged brane-world black holes. We
employ a propagating algorithm which makes use of the three-dimensional
multipole expansion and analytically yields the metric elements as functions of
the five-dimensional coordinates and of the ADM mass, tidal charge and brane
tension. Since the projected brane equations cannot determine how the charge
depends on the mass, our main purpose is to select the combinations of these
parameters for which black holes of microscopic size possess a regular bulk.
Our results could in particular be relevant for a better understanding of
TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos
corrected, no change in conclusion
Capture of non-relativistic particles in eccentric orbits by a Kerr black hole
We obtain approximate analytic expressions for the critical value of the
total angular momentum of a non-relativistic test particle moving in the Kerr
geometry, such that it will be captured by the black hole. The expressions
apply to arbitrary orbital inclinations, and are accurate over the entire range
of angular momentum for the Kerr black hole. The expressions can be easily
implemented in N-body simulations of the evolution of star clusters around
massive galactic black holes, where such captures play an important role.Comment: 8 pages, 1 figure, published versio
Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the strong equivalence principle to second post-Newtonian order
Using post-Newtonian equations of motion for fluid bodies valid to the second
post-Newtonian order, we derive the equations of motion for binary systems with
finite-sized, non-spinning but arbitrarily shaped bodies. In particular we
study the contributions of the internal structure of the bodies (such as
self-gravity) that would diverge if the size of the bodies were to shrink to
zero. Using a set of virial relations accurate to the first post-Newtonian
order that reflect the stationarity of each body, and redefining the masses to
include 1PN and 2PN self-gravity terms, we demonstrate the complete
cancellation of a class of potentially divergent, structure-dependent terms
that scale as s^{-1} and s^{-5/2}, where s is the characteristic size of the
bodies. This is further evidence of the Strong Equivalence Principle, and
supports the use of post-Newtonian approximations to derive equations of motion
for strong-field bodies such as neutron stars and black holes. This extends
earlier work done by Kopeikin.Comment: 14 pages, submitted to Phys. Rev. D; small changes to coincide with
published versio
The force of gravity in Schwarzschild and Gullstrand-Painlev\'e coordinates
We derive the exact equations of motion (in Newtonian, F=ma, form) for test
masses in Schwarzschild and Gullstrand-Painlev\'e coordinates. These equations
of motion are simpler than the usual geodesic equations obtained from
Christoffel tensors in that the affine parameter is eliminated. The various
terms can be compared against tests of gravity. In force form, gravity can be
interpreted as resulting from a flux of superluminal particles (gravitons). We
show that the first order relativistic correction to Newton's gravity results
from a two graviton interaction.Comment: 6 pages, Honorable mention in 2009 Gravity Essay Competition,
submitted IJMPD, added reference
QuestionBuddy – A collaborative question search and play portal.
Generally itembanks are inaccessible to students. Current use of itembanks focus on the teacher as having responsibility to organise questions (place them in pools, associate them with course content) and make them available/deliver them to students. This limits students to the teachers perspective and to the questions that the teacher has made available. As the practice of itembanking increases it may be appropriate to encourage students to use questions from pools not directly prepared by their teacher. A mechanism for searching across itembanks and sharing recommendations with peers would be of help in facilitating this. We describe QuestionBuddy, a collaborative filter based question portal for students, built to study student usage of, and attitudes to, such a system
Testing General Relativity with Atom Interferometry
The unprecedented precision of atom interferometry will soon lead to
laboratory tests of general relativity to levels that will rival or exceed
those reached by astrophysical observations. We propose such an experiment that
will initially test the equivalence principle to 1 part in 10^15 (300 times
better than the current limit), and 1 part in 10^17 in the future. It will also
probe general relativistic effects--such as the non-linear three-graviton
coupling, the gravity of an atom's kinetic energy, and the falling of light--to
several decimals. Further, in contrast to astrophysical observations,
laboratory tests can isolate these effects via their different functional
dependence on experimental variables.Comment: 4 pages, 1 figure; v2: Minor changes made for publicatio
A Parameterized Post-Friedmann Framework for Modified Gravity
We develop a parameterized post-Friedmann (PPF) framework which describes
three regimes of modified gravity models that accelerate the expansion without
dark energy. On large scales, the evolution of scalar metric and density
perturbations must be compatible with the expansion history defined by distance
measures. On intermediate scales in the linear regime, they form a
scalar-tensor theory with a modified Poisson equation. On small scales in dark
matter halos such as our own galaxy, modifications must be suppressed in order
to satisfy stringent local tests of general relativity. We describe these
regimes with three free functions and two parameters: the relationship between
the two metric fluctuations, the large and intermediate scale relationships to
density fluctuations and the two scales of the transitions between the regimes.
We also clarify the formal equivalence of modified gravity and generalized dark
energy. The PPF description of linear fluctuation in f(R) modified action and
the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with
explicit calculations. Lacking cosmological simulations of these models, our
non-linear halo-model description remains an ansatz but one that enables
well-motivated consistency tests of general relativity. The required
suppression of modifications within dark matter halos suggests that the linear
and weakly non-linear regimes are better suited for making complementary test
of general relativity than the deeply non-linear regime.Comment: 12 pages, 9 figures, additional references reflect PRD published
versio
Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity
Recently we discussed a multimetric gravity theory containing several copies
of standard model matter each of which couples to its own metric tensor. This
construction contained dark matter sectors interacting repulsively with the
visible matter sector, and was shown to lead to cosmological late-time
acceleration. In order to test the theory with high-precision experiments
within the solar system we here construct a simple extension of the
parametrized post-Newtonian (PPN) formalism for multimetric gravitational
backgrounds. We show that a simplified version of this extended formalism
allows the computation of a subset of the PPN parameters from the linearized
field equations. Applying the simplified formalism we find that the PPN
parameters of our theory do not agree with the observed values, but we are able
to improve the theory so that it becomes consistent with experiments of
post-Newtonian gravity and still features its promising cosmological
properties.Comment: 19 pages, no figures, journal versio
- …
