9,345 research outputs found

    Finally, results from Gravity Probe-B

    Full text link
    Nearly fifty years after its inception, the Gravity Probe B satellite mission delivers the first measurements of how a spinning gyroscope precesses in the gravitational warping of spacetime.Comment: A Viewpoint article, published in Physics 4, 43 (2011), available at http://physics.aps.org/articles/v4/43 Submitted to the arXiv by permission of the American Physical Societ

    Constraining Lorentz-violating, Modified Dispersion Relations with Gravitational Waves

    Full text link
    Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their impact on the propagation of gravitational waves. A modified dispersion relation forces different wavelengths of the gravitational wave train to travel at slightly different velocities, leading to a modified phase evolution observed at a gravitational-wave detector. We show how such corrections map to the waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are tightest for dispersion relations that scale with small power of the graviton's momentum and deteriorate for a steeper scaling.Comment: 11 pages, 3 figures, 2 tables: title changed slightly, published versio

    Exploring the bulk of tidal charged micro-black holes

    Full text link
    We study the bulk corresponding to tidal charged brane-world black holes. We employ a propagating algorithm which makes use of the three-dimensional multipole expansion and analytically yields the metric elements as functions of the five-dimensional coordinates and of the ADM mass, tidal charge and brane tension. Since the projected brane equations cannot determine how the charge depends on the mass, our main purpose is to select the combinations of these parameters for which black holes of microscopic size possess a regular bulk. Our results could in particular be relevant for a better understanding of TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos corrected, no change in conclusion

    Capture of non-relativistic particles in eccentric orbits by a Kerr black hole

    Full text link
    We obtain approximate analytic expressions for the critical value of the total angular momentum of a non-relativistic test particle moving in the Kerr geometry, such that it will be captured by the black hole. The expressions apply to arbitrary orbital inclinations, and are accurate over the entire range of angular momentum for the Kerr black hole. The expressions can be easily implemented in N-body simulations of the evolution of star clusters around massive galactic black holes, where such captures play an important role.Comment: 8 pages, 1 figure, published versio

    Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the strong equivalence principle to second post-Newtonian order

    Full text link
    Using post-Newtonian equations of motion for fluid bodies valid to the second post-Newtonian order, we derive the equations of motion for binary systems with finite-sized, non-spinning but arbitrarily shaped bodies. In particular we study the contributions of the internal structure of the bodies (such as self-gravity) that would diverge if the size of the bodies were to shrink to zero. Using a set of virial relations accurate to the first post-Newtonian order that reflect the stationarity of each body, and redefining the masses to include 1PN and 2PN self-gravity terms, we demonstrate the complete cancellation of a class of potentially divergent, structure-dependent terms that scale as s^{-1} and s^{-5/2}, where s is the characteristic size of the bodies. This is further evidence of the Strong Equivalence Principle, and supports the use of post-Newtonian approximations to derive equations of motion for strong-field bodies such as neutron stars and black holes. This extends earlier work done by Kopeikin.Comment: 14 pages, submitted to Phys. Rev. D; small changes to coincide with published versio

    The force of gravity in Schwarzschild and Gullstrand-Painlev\'e coordinates

    Full text link
    We derive the exact equations of motion (in Newtonian, F=ma, form) for test masses in Schwarzschild and Gullstrand-Painlev\'e coordinates. These equations of motion are simpler than the usual geodesic equations obtained from Christoffel tensors in that the affine parameter is eliminated. The various terms can be compared against tests of gravity. In force form, gravity can be interpreted as resulting from a flux of superluminal particles (gravitons). We show that the first order relativistic correction to Newton's gravity results from a two graviton interaction.Comment: 6 pages, Honorable mention in 2009 Gravity Essay Competition, submitted IJMPD, added reference

    QuestionBuddy – A collaborative question search and play portal.

    Get PDF
    Generally itembanks are inaccessible to students. Current use of itembanks focus on the teacher as having responsibility to organise questions (place them in pools, associate them with course content) and make them available/deliver them to students. This limits students to the teachers perspective and to the questions that the teacher has made available. As the practice of itembanking increases it may be appropriate to encourage students to use questions from pools not directly prepared by their teacher. A mechanism for searching across itembanks and sharing recommendations with peers would be of help in facilitating this. We describe QuestionBuddy, a collaborative filter based question portal for students, built to study student usage of, and attitudes to, such a system

    Testing General Relativity with Atom Interferometry

    Get PDF
    The unprecedented precision of atom interferometry will soon lead to laboratory tests of general relativity to levels that will rival or exceed those reached by astrophysical observations. We propose such an experiment that will initially test the equivalence principle to 1 part in 10^15 (300 times better than the current limit), and 1 part in 10^17 in the future. It will also probe general relativistic effects--such as the non-linear three-graviton coupling, the gravity of an atom's kinetic energy, and the falling of light--to several decimals. Further, in contrast to astrophysical observations, laboratory tests can isolate these effects via their different functional dependence on experimental variables.Comment: 4 pages, 1 figure; v2: Minor changes made for publicatio

    A Parameterized Post-Friedmann Framework for Modified Gravity

    Full text link
    We develop a parameterized post-Friedmann (PPF) framework which describes three regimes of modified gravity models that accelerate the expansion without dark energy. On large scales, the evolution of scalar metric and density perturbations must be compatible with the expansion history defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor theory with a modified Poisson equation. On small scales in dark matter halos such as our own galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity. We describe these regimes with three free functions and two parameters: the relationship between the two metric fluctuations, the large and intermediate scale relationships to density fluctuations and the two scales of the transitions between the regimes. We also clarify the formal equivalence of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R) modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with explicit calculations. Lacking cosmological simulations of these models, our non-linear halo-model description remains an ansatz but one that enables well-motivated consistency tests of general relativity. The required suppression of modifications within dark matter halos suggests that the linear and weakly non-linear regimes are better suited for making complementary test of general relativity than the deeply non-linear regime.Comment: 12 pages, 9 figures, additional references reflect PRD published versio

    Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity

    Full text link
    Recently we discussed a multimetric gravity theory containing several copies of standard model matter each of which couples to its own metric tensor. This construction contained dark matter sectors interacting repulsively with the visible matter sector, and was shown to lead to cosmological late-time acceleration. In order to test the theory with high-precision experiments within the solar system we here construct a simple extension of the parametrized post-Newtonian (PPN) formalism for multimetric gravitational backgrounds. We show that a simplified version of this extended formalism allows the computation of a subset of the PPN parameters from the linearized field equations. Applying the simplified formalism we find that the PPN parameters of our theory do not agree with the observed values, but we are able to improve the theory so that it becomes consistent with experiments of post-Newtonian gravity and still features its promising cosmological properties.Comment: 19 pages, no figures, journal versio
    corecore