10,821 research outputs found

    Agriculture's decline in Indonesia : supply or demand determined

    Get PDF
    Agriculture's share in an economy invariably declines as per capita income rises and as the economy develops. The literature on its causes has focused on the relative price effects arising from demand factors--especially Engel's Law (that the proportion of income spent on food declines as incomes rise)--rather than on such supply-side influences as changes in relative factor endowments and different rates of technical change. Engel's Law is convincing at the global level but it does not explain why agriculture's share should decline sharply in small open economies that experience rapid economic growth. A simple structural model of the transformation of the Indonesian economy, applying the Error Correction Mechanism to capture the dynamics resulting from disequilibria and costs of adjustment is developed. The authors develop an econometric model of the economy's supply side so they can explain agriculture's decline by the three theoretical factors: relative price changes, technical change, and factor accumulation. Based on the model's results, the authors conclude that the decline in the relative price of agricultural output contributed relatively little to the decline in agriculture's share. Technical change actually had a positive effect on agriculture's share, retarding the pressures for a decline in its share over time. By far the most important influence appears to have been the rapid accumulation of capital relative to labor over the period studied (1960-87).Economic Theory&Research,Environmental Economics&Policies,Agricultural Knowledge&Information Systems,Economic Growth,Inequality

    Cerenkov's Effect and Neutrino Oscillations in Loop Quantum Gravity

    Get PDF
    Bounds on the scale parameter {\cal L} arising in loop quantum gravity theory are derived in the framework of Cerenkov's effect and neutrino oscillations. Assuming that {\cal L} is an universal constant, we infer {\cal L}> 10^{-18}eV^{-1}, a bound compatible with ones inferred in different physical context.Comment: 6 pages, no figures, in print on MPL

    Distributional Reinforcement Learning with Quantile Regression

    Full text link
    In reinforcement learning an agent interacts with the environment by taking actions and observing the next state and reward. When sampled probabilistically, these state transitions, rewards, and actions can all induce randomness in the observed long-term return. Traditionally, reinforcement learning algorithms average over this randomness to estimate the value function. In this paper, we build on recent work advocating a distributional approach to reinforcement learning in which the distribution over returns is modeled explicitly instead of only estimating the mean. That is, we examine methods of learning the value distribution instead of the value function. We give results that close a number of gaps between the theoretical and algorithmic results given by Bellemare, Dabney, and Munos (2017). First, we extend existing results to the approximate distribution setting. Second, we present a novel distributional reinforcement learning algorithm consistent with our theoretical formulation. Finally, we evaluate this new algorithm on the Atari 2600 games, observing that it significantly outperforms many of the recent improvements on DQN, including the related distributional algorithm C51

    Constraining the evolutionary history of Newton's constant with gravitational wave observations

    Full text link
    Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time-function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time-derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a {\emph{constraint map}} over the entire range of redshifts where binary black hole mergers are expected to occur. A LISA observation of an equal-mass inspiral event with total redshifted mass of 10^5 solar masses for three years should be able to measure G˙/G\dot{G}/G at the time of merger to better than 10^(-11)/yr.Comment: 11 pages, 2 figures, replaced with version accepted for publication in Phys. Rev. D

    Time-delay and Doppler tests of the Lorentz symmetry of gravity

    Get PDF
    Modifications to the classic time-delay effect and Doppler shift in General Relativity (GR) are studied in the context of the Lorentz-violating Standard-Model Extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.Comment: 13 pages, 4 figures, references added, matches PRD versio

    Singular value decomposition in parametrised tests of post-Newtonian theory

    Full text link
    Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of non-spinning compact binaries moving in circular orbits is fully characterized by the two component masses. If two of these coefficients are independently measured, the masses can be estimated. Future gravitational wave observations could measure many of the 8 independent PN coefficients calculated to date. These additional measurements can be used to test the PN predictions of the underlying theory of gravity. Since all of these parameters are functions of the two component masses, there is strong correlation between the parameters when treated independently. Using Singular Value Decomposition of the Fisher information matrix, we remove this correlations and obtain a new set of parameters which are linear combinations of the original phasing coefficients. We show that the new set of parameters can be estimated with significantly improved accuracies which has implications for the ongoing efforts to implement parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and Quantum Gravity (Matches with the published version

    Precessing supermassive black hole binaries and dark energy measurements with LISA

    Full text link
    Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ablity of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter ww. Using the Λ\LambdaCDM model of cosmology, we show that observations of precessing binaries by LISA, combined with a redshift measurement, can improve the determination of ww up to an order of magnitude with respect to the non precessing case depending on the masses, mass ratio and the redshift.Comment: 4 pages, 4 figures, version accepted to PR

    The Newtonian Limit of F(R) gravity

    Full text link
    A general analytic procedure is developed to deal with the Newtonian limit of f(R)f(R) gravity. A discussion comparing the Newtonian and the post-Newtonian limit of these models is proposed in order to point out the differences between the two approaches. We calculate the post-Newtonian parameters of such theories without any redefinition of the degrees of freedom, in particular, without adopting some scalar fields and without any change from Jordan to Einstein frame. Considering the Taylor expansion of a generic f(R)f(R) theory, it is possible to obtain general solutions in term of the metric coefficients up to the third order of approximation. In particular, the solution relative to the gttg_{tt} component gives a gravitational potential always corrected with respect to the Newtonian one of the linear theory f(R)=Rf(R)=R. Furthermore, we show that the Birkhoff theorem is not a general result for f(R)f(R)-gravity since time-dependent evolution for spherically symmetric solutions can be achieved depending on the order of perturbations. Finally, we discuss the post-Minkowskian limit and the emergence of massive gravitational wave solutions.Comment: 16 page
    corecore