460 research outputs found
Auditioning For Care: Transsexual Men Accessing Health Care
Utilizing an Institutional Ethnographic framework, the aim of this research project is to make visible the interconnected, often complex forms of work that transsexual men in Ontario do in order to access trans specific health care. The forms of work were made visible beginning from the experiential standpoint of transsexual men. This work was mapped onto the specific sites of health care access and traced up through the discourses and practices that socially and institutionally shape this work. The originating texts of these discourses were illuminated. This was accomplished by interviewing four transsexual men who had accessed health care services in Ontario during their process of transitioning. Findings indicated that much of the work that transsexual men complete is linked to their knowledge of the discourses that have directly informed what is deemed a credible transsexual identity and transsexual trajectory in Ontario. Findings suggest that further exploration of these texts and the specific institutional sites and processes where these discourses circulate would illuminate how trans specific health care is socially organized to unfold in Ontario.Master of Social Work (MSW
Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.
BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.This research was funded by GlaxoSmithKline, the Centre for Environment, Fisheries and Aquaculture Science and the Biotechnology and Biological Sciences Research Council under an industrial CASE studentship. The funder Centre for Environment, Fisheries and Aquaculture Science provided support in the form of salaries, research materials and facilities for authors DVJ and CBA, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The funder GlaxoSmithKline provided support in the form of salaries for author JR, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version. It was first published by PLOS at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133492
Recommended from our members
Antimicrobial resistance gene monitoring in aquatic environments
This dissertation documents the development of an environmental framework for monitoring antimicrobial resistance gene (ARG) dissemination in the aquatic environment. The work opens with a review of the relevant literature and outlines the importance of an environmental framework for monitoring ARG dissemination as part of antimicrobial resistance risk assessments.
The ability to interrogate sequencing data quickly and easily for the presence of ARGs is crucial in order to facilitate their monitoring in the environment. As current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria in the environment were limited in their effectiveness and scope, the dissertation begins by describing the design and implementation of a Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally-acquired ARGs in raw sequencing data.
The suitability of metagenomic methods for monitoring the ARG content of effluents from faecal sources was then assessed via a pilot study of a river catchment. Novel metagenomes generated from effluents entering the catchment were interrogated for ARGs. The relative abundance of ARGs in effluents were determined to be higher relative to the background environment, as were sequences relating to human and animal pathogens and mobile genetic elements. Thus, effluents were implicated in the dissemination of ARGs throughout the aquatic environment.
To determine if ARGs were potentially in use in the environment, the expression of ARGs within effluents was then evaluated across a series of longitudinal samples through the use of metatranscriptomics, and the presence of potential environmental antimicrobial selection pressures was examined. This demonstrated that the abundance of ARGs, as well as antimicrobial usage at the effluent source, was correlated with the transcription of ARGs in aquatic environments.
The work described in this dissertation has also found that horizontally transmitted ARGs were present in pathogenic endospore-forming bacteria commonly found across the aquatic environment, potentially providing a mechanism for ARG persistence in the environment.
Finally, these findings were integrated into a universal framework for monitoring ARG dissemination in aquatic environments and used to highlight the developments required to incorporate this framework into future environmental ARG research and to facilitate antimicrobial resistance risk assessments.The work described in this dissertation has been carried out as part of a BBSRC Industrial CASE PhD studentship, sponsored by GlaxoSmithKline and the Centre for Environment, Fisheries and Aquaculture Science
The diversity, evolution and ecology of Salmonella in venomous snakes
BACKGROUND: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. METHODOLOGY/PRINCIPLE FINDINGS: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. SIGNIFICANCE: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis
Panel: Post-PhD Research - the Trails and Tribulations of Beginning Post-Doctoral Research Following a PhD
DRIVING WYOMING INTO MY BLOOD AND MARROW AND FIXING IT THERE”: THE MALE BODY AT THE IMPERIAL FRONTIER IN THE FICTION OF OWEN WISTER
The Iowa Homemaker vol.35, no.11
Message from Dean Lebaron, page 5
Iowa Staters at AHEA, Cathy Watson, page 6
Evolution of a Coed, Jane Rowe, page 7
“Yes, I Am the Teacher”, Carol Hermeier, page 8
Honoraries and You, Joanne Will, page 10
Inside Football, Bill Duffy, page 12
Karla Baur – Student Career Girl, Ann Baur, page 13
What’s New, Marcia Wilsie, page 14
Storage Hints, Martha Burleigh, page 15
Introducing: Pilar Garcia from Manila, Margot Copeland, page 15
Trends, Martha Elder, page 1
<i>Salmonella</i>succinate utilisation is inhibited by multiple regulatory systems
AbstractSuccinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these niches are colonised by the pathogenic bacteriumSalmonella entericaserovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source forin vitrocultivation,Salmonellaand other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we used an experimental evolution approach to isolate fast-growing mutants during growth ofS. Typhimurium on succinate containing minimal medium.Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA.The RNA chaperone Hfq, the exoribonuclease PNPase and their cognate sRNAs function together to repress succinate utilisationviaRpoS induction. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation.Our discoveries shed light on redundant regulatory systems that tightly regulate the utilisation of succinate. We propose that the control of central carbon metabolism by multiple regulatory systems inSalmonellagoverns the infection niche-specific utilisation of succinate.</jats:p
- …
