545 research outputs found

    A new astrobiological model of the atmosphere of Titan

    Get PDF
    We present results of an investigation into the formation of nitrogen-bearing molecules in the atmosphere of Titan. We extend a previous model (Li et al. 2015, 2016) to cover the region below the tropopause, so the new model treats the atmosphere from Titan's surface to an altitude of 1500 km. We consider the effects of condensation and sublimation using a continuous, numerically stable method. This is coupled with parameterized treatments of the sedimentation of the aerosols and their condensates, and the formation of haze particles. These processes affect the abundances of heavier species such as the nitrogen-bearing molecules, but have less effect on the abundances of lighter molecules. Removal of molecules to form aerosols also plays a role in determining the mixing ratios, in particular of HNC, HC3N and HCN. We find good agreement with the recently detected mixing ratios of C2H5CN, with condensation playing an important role in determining the abundance of this molecule below 500 km. Of particular interest is the chemistry of acrylonitrile (C2H3CN) which has been suggested by Stevenson et al. (2015) as a molecule that could form biological membranes in an oxygen-deficient environment. With the inclusion of haze formation we find good agreement of our model predictions of acrylonitrile with the available observations.Comment: 17 pages, 6 figures, Accepted by Ap

    Benzene formation in the inner regions of protostellar disks

    Get PDF
    Benzene (c-C6H6) formation in the inner 3 AU of a protostellar disk can be efficient, resulting in high abundances of benzene in the midplane region. The formation mechanism is different to that found in interstellar clouds and in protoplanetary nebulae, and proceeds mainly through the reaction between allene (C3H4) and its ion. This has implications for PAH formation, in that some fraction of PAHs seen in the solar system could be native rather than inherited from the interstellar medium.Comment: 9 pages, 2 colour figures, to be published in the Astrophysical Journal Letter

    A search for co-evolving ion and neutral gas species in prestellar molecular cloud cores

    Full text link
    Comparison of linewidths of spectral line profiles of ions and neutral molecules have been recently used to estimate the strength of the magnetic field in turbulent star-forming regions. However, the ion (HCO+) and neutral (HCN) species used in such studies may not be necessarily co-evolving at every scale and density and may thus not trace the same regions. Here, we use coupled chemical/dynamical models of evolving prestellar molecular cloud cores including non-equilibrium chemistry, with and without magnetic fields, to study the spatial distribution of HCO+ and HCN, which have been used in observations of spectral linewidth differences to date. In addition, we seek new ion-neutral pairs that are good candidates for such observations because they have similar evolution and are approximately co-spatial in our models. We identify three such good candidate pairs: HCO+/NO, HCO+/CO, and NO+/NO.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Non-Equilibrium Chemistry of Dynamically Evolving Prestellar Cores: I. Basic Magnetic and Non-Magnetic Models and Parameter Studies

    Full text link
    We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores, and explore the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compounded with uncertainties induced by other model parameters, make it difficult to discriminate among dynamical models. To address these difficulties, we identify abundance ratios between particular molecules, the measurement of which would have maximal potential for discrimination among the different models examined here. In particular, we find that the ratios between NH3 and CO; NH2 and CO; NH3 and HCO+ are sensitive to the evolutionary timescale, and that the ratio between HCN and OH is sensitive to the C/O ratio. Finally, we demonstrate that measurements of the central deviation (central depletion or enhancement) of abundances of certain molecules are good indicators of the dynamics of the core.Comment: 20 pages, 15 figures, accepted for publication in Ap

    Photochemistry in the inner layers of clumpy circumstellar envelopes: formation of water in C-rich objects and of C-bearing molecules in O-rich objects

    Full text link
    A mechanism based on the penetration of interstellar ultraviolet photons into the inner layers of clumpy circumstellar envelopes around AGB stars is proposed to explain the non-equilibrium chemistry observed in such objects. We show through a simple modelling approach that in circumstellar envelopes with a certain degree of clumpiness or with moderately low mass loss rates (a few 10^(-7) solar masses per year) a photochemistry can take place in the warm and dense inner layers inducing important changes in the chemical composition. In carbon-rich objects water vapor and ammonia would be formed with abundances of 10^(-8) - 10(^-6) relative to H2, while in oxygen-rich envelopes ammonia and carbon-bearing molecules such as HCN and CS would form with abundances of 10^(-9) - 10^(-7) relative to H2. The proposed mechanism would explain the recent observation of warm water vapor in the carbon-rich envelope IRC +10216 with the Herschel Space Observatory, and predict that H2O should be detectable in other carbon-rich objects.Comment: 5 pages, 3 figures; accepted for publication in ApJ Letter

    Chemical Processes in Protoplanetary Disks

    Get PDF
    We have developed a high resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (sub-milli-arcsecond in the inner disk for objects at the distance of Taurus, ~ 140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freeze out and thermal and non-thermal desorption (cosmic-ray induced desorption, photodesorption and X-ray desorption) and a grain-surface network. We find that cosmic-ray induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN and CS, in particular. In the outer disk, we also see enhancements in the abundances of H2O and CO2. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenise the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH3OH, HCOOCH3 and CH3OCH3 to potentially observable values (i.e. a fractional abundance of >~ 1.0E-11).Comment: 24 pages, 13 figures, accepted for publication in Ap

    Evidence for Multiple Pathways to Deuterium Enhancements in Protoplanetary Disks

    Full text link
    The distributions of deuterated molecules in protoplanetary disks are expected to depend on the molecular formation pathways. We use observations of spatially resolved DCN emission from the disk around TW Hya, acquired during ALMA Science verification with a ~3" synthesized beam, together with comparable DCO+ observations from the Submillimeter Array, to investigate differences in the radial distributions of these species and hence differences in their formation chemistry. In contrast to DCO+, which shows an increasing column density with radius, DCN is better fit by a model that is centrally peaked. We infer that DCN forms at a smaller radii and thus at higher temperatures than DCO+. This is consistent with chemical network model predictions of DCO+ formation from H2D+ at T<30 K and DCN formation from additional pathways involving CH2D+ at higher temperatures. We estimate a DCN/HCN abundance ratio of ~0.017, similar to the DCO+/HCO+ abundance ratio. Deuterium fractionation appears to be efficient at a range of temperatures in this protoplanetary disk. These results suggest caution in interpreting the range of deuterium fractions observed in Solar System bodies, as multiple formation pathways should be taken into account.Comment: accepted for publication in Ap
    corecore